.Даны линейная функция y = 8x -4. Задайте формулой линейную функцию, график которой: а) параллелен графику данной функции; б) пересекает график данной функции; в) параллелен графику данной функции и проходит через начало координат
3)Найдем значение данного выражения (-3,25 - 2,75) : (-0,6) + 0,8 * (-7) по действиям (сначала разность в скобках, затем деление, далее произведение и сумма): 1) -3,25 - 2,75 = (складываем числа по модулю и в ответе ставим знак "минус") = -6; 2) -6 : (- 0,6) = (делим по модулю и в ответе ставим знак "плюс") = 10; 3) 0,8 * (-7) = (умножаем числа по модулю и в ответе ставим знак "минус") = -5,6; 4) 10 + (-5,6) = (от модуля большего числа отнимаем модуль меньшего числа и ставим знак модуля большего числа) = 4,4. ответ: 4,4.
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
1)129
Объяснение:
3)Найдем значение данного выражения (-3,25 - 2,75) : (-0,6) + 0,8 * (-7) по действиям (сначала разность в скобках, затем деление, далее произведение и сумма): 1) -3,25 - 2,75 = (складываем числа по модулю и в ответе ставим знак "минус") = -6; 2) -6 : (- 0,6) = (делим по модулю и в ответе ставим знак "плюс") = 10; 3) 0,8 * (-7) = (умножаем числа по модулю и в ответе ставим знак "минус") = -5,6; 4) 10 + (-5,6) = (от модуля большего числа отнимаем модуль меньшего числа и ставим знак модуля большего числа) = 4,4. ответ: 4,4.
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.