Первый поезд проехал весь путь : S= Vt Тогда второй поезд: S= 0.75V (t + 2.25) т.к. 2 ч. 15 мин = 2 15/60 ч. = 2,25 ч. 100% - 25% = 75% = 75/100=0,75 Расстояние, которое поезда одинаковое.⇒ Vt = 0.75V(t+2.25) Vt = 0.75Vt + 1.6875V Vt - 0.75 Vt = 1.6875V 0.25Vt = 1.6875V t= 1.6875V / 0.25V t= 6.75 часа - время в пути первого поезда 6.75 +2.25 = 9 часов - время в пути второго второго поезда 7 ч. 00 мин. + 9 ч. = 16 ч. 00 мин. - второй поезд прибыл в Краснодар.
ответ: в 16 часов второй поезд прибыл в Краснодар.
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
S= Vt
Тогда второй поезд:
S= 0.75V (t + 2.25)
т.к. 2 ч. 15 мин = 2 15/60 ч. = 2,25 ч.
100% - 25% = 75% = 75/100=0,75
Расстояние, которое поезда одинаковое.⇒
Vt = 0.75V(t+2.25)
Vt = 0.75Vt + 1.6875V
Vt - 0.75 Vt = 1.6875V
0.25Vt = 1.6875V
t= 1.6875V / 0.25V
t= 6.75 часа - время в пути первого поезда
6.75 +2.25 = 9 часов - время в пути второго второго поезда
7 ч. 00 мин. + 9 ч. = 16 ч. 00 мин. - второй поезд прибыл в Краснодар.
ответ: в 16 часов второй поезд прибыл в Краснодар.
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение: