Даны точки А(2, -3), В(3, -5). Написать уравнение прямой, прямой AB, перпендикулярной проходящей через середину AB: Выберите один ответ: a. 4x-2y-21=0 b. 2x-4y-21=0 с. 2х-4у+21=0 d. 4x-2y-21=0 е. 2х+4y-21=0
Классическое решение делается в двух основных частях:
1) Поиск ОДЗ – область допустимых значений. 2) Решение уравнения.
Немного о первом. Все семь основных арифметических действий – имеют ОДНОЗНАЧНЫЙ результат. Вы, возможно знаете пока не все из них, но это не меняет ничего в рассуждениях. Однозначность действия означает, что при вычислении результата любого из них получается однозначный ответ. Ну, например, ведь нет такого, что у одного при вычислении а у другого :–) ?! Конечно же, нет, это бы вызывало полную неразбериху и ни в одной науке ничего нельзя было бы вычислить ни по одной формуле. Но иногда, при изучении квадратного корня, учащиеся понимают это действие не совсем корректно, полагая, что но одновременно с тем как бы и Это ошибка! Так понимать действие корня нельзя. Любой калькулятор покажет именно и это и есть верный результат вычислений, поскольку он единственный, так как любое арифметическое действие должно давать ОДНОЗНАЧНЫЙ результат.
Происхождение такого недоразумения вполне объяснимо. Это происходит из созвучности понятий «квадратный арифметический корень» и «корни нелинейного уравнения». Выше мы говорили именно о «квадратном арифметическом корне», и об однозначности этого арифметического действия, а что такое «корни нелинейного уравнения» можно проиллюстрировать на таком примере, как Корни этого нелинейного уравнения, как легко понять: и или в короткой записи что равносильно где сам «арифметический квадратный корень» – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему. Аналогично, например, для уравнения: Корни этого нелинейного уравнения, как легко понять: где сам «арифметический квадратный корень» – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему.
Значит при поиске ОДЗ (область допустимых значений) нужно всегда учитывать, что подкоренное выражение (всё то, что стоит под знаком корня) во-первых: должно быть неотрицательным, потому что иначе нельзя извлечь корень, а во-вторых: результат вычисления самого арифметического квадратного корня должен быть равен тоже неотрицательному числу, по причинам, которые были подробно описаны в предыдущем абзаце. Есть ещё несколько простых принципов, по которым выстраивается логика ОДЗ, но в данной задаче они не нужны, так что не будем все их перечислять. А теперь решим задачу классическим
Корень пятой степени равен -2 возведем обе части в степень 5. 2x-7=(-2)^5=-32 2x=-32+7=-25 x=12.5
выражение в знаменателе ≠0 5х-8≠0 х≠8/5 5х-8>0← под корнем число большее 0 →x>8/5
t+5=√(2t²+19t+43) t+5≥0 → t≥-5 возводим обе части в квадрат → t²+10t+25=2t²+19t+43→ t²+9t+18=0 корни по виетту t1=-3 t2=-6 этот корень меньше -5 и не годится. ответ -3
разность дробей в примере 4 находим используя формулу разности квадратов. (2х^0.5-3y^0.5-2x^0.5-3y^0.5)/(4x^1-9y^1)=-6y^0.5/(4x-3y) умножим -6y^0.5*(2x-9y/2)/(4x-9y)=-6y^0.5(4x-9y)/2(4x-9y)=-3y^0.5= =-3√y
1) Поиск ОДЗ – область допустимых значений.
2) Решение уравнения.
Немного о первом.
Все семь основных арифметических действий – имеют ОДНОЗНАЧНЫЙ результат. Вы, возможно знаете пока не все из них, но это не меняет ничего в рассуждениях. Однозначность действия означает, что при вычислении результата любого из них получается однозначный ответ. Ну, например, ведь нет такого, что у одного при вычислении а у другого :–) ?! Конечно же, нет, это бы вызывало полную неразбериху и ни в одной науке ничего нельзя было бы вычислить ни по одной формуле. Но иногда, при изучении квадратного корня, учащиеся понимают это действие не совсем корректно, полагая, что но одновременно с тем как бы и Это ошибка! Так понимать действие корня нельзя. Любой калькулятор покажет именно и это и есть верный результат вычислений, поскольку он единственный, так как любое арифметическое действие должно давать ОДНОЗНАЧНЫЙ результат.
Происхождение такого недоразумения вполне объяснимо. Это происходит из созвучности понятий «квадратный арифметический корень» и «корни нелинейного уравнения». Выше мы говорили именно о «квадратном арифметическом корне», и об однозначности этого арифметического действия, а что такое «корни нелинейного уравнения» можно проиллюстрировать на таком примере, как Корни этого нелинейного уравнения, как легко понять: и или в короткой записи что равносильно где сам «арифметический квадратный корень» – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему. Аналогично, например, для уравнения: Корни этого нелинейного уравнения, как легко понять: где сам «арифметический квадратный корень» – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему.
Значит при поиске ОДЗ (область допустимых значений) нужно всегда учитывать, что подкоренное выражение (всё то, что стоит под знаком корня) во-первых: должно быть неотрицательным, потому что иначе нельзя извлечь корень, а во-вторых: результат вычисления самого арифметического квадратного корня должен быть равен тоже неотрицательному числу, по причинам, которые были подробно описаны в предыдущем абзаце. Есть ещё несколько простых принципов, по которым выстраивается логика ОДЗ, но в данной задаче они не нужны, так что не будем все их перечислять. А теперь решим задачу классическим
Р Е Ш Е Н И Е :
;
;
1. ОДЗ:
;
2. Решение уравнения:
;
;
;
;
;
это не соответствует ОДЗ, поскольку ;
что соответствует ОДЗ, поскольку ;
О Т В Е Т :
2x-7=(-2)^5=-32 2x=-32+7=-25 x=12.5
выражение в знаменателе ≠0 5х-8≠0 х≠8/5
5х-8>0← под корнем число большее 0 →x>8/5
t+5=√(2t²+19t+43)
t+5≥0 → t≥-5
возводим обе части в квадрат → t²+10t+25=2t²+19t+43→
t²+9t+18=0 корни по виетту t1=-3 t2=-6 этот корень меньше -5 и не годится.
ответ -3
разность дробей в примере 4 находим используя формулу разности квадратов.
(2х^0.5-3y^0.5-2x^0.5-3y^0.5)/(4x^1-9y^1)=-6y^0.5/(4x-3y)
умножим -6y^0.5*(2x-9y/2)/(4x-9y)=-6y^0.5(4x-9y)/2(4x-9y)=-3y^0.5=
=-3√y