Даны точки: А(2; –8; 1), В(–7; 10; –8), С(–8; 0; –10),
D( –9; 8; 7). Найдите:
а) координаты
AB
и
CD
;
б) длину отрезков AB и CD.
2. Даны векторы
a
и
b
:
a
= 2,
b = 2 , (a; b)
= 135.
Найдите
a − 2b .
3. Даны точки: А(2; –8; 1), В(–7; 10; –8), С(–8; 0; –10),
D( –9; 8; 7). Найдите:
а) угол между векторами
AB
и
CD
;
б) расстояние между серединами отрезков AB и CD
Длина ровной дороги в 1,5 раза длиннее, чем 2S, то есть равна
1,5·2S=3S км .
Скорость девочки по ровной дороге равна V₁=х км/час.
Тогда время, затраченное на прохождение ровной дороги равно
t₁=3S/x =3·(S/x)(час).
Скорость девочки на спуске в 2 раза больше, чем по ровной дороге, то есть равна V₂=2x (км/час).
Время, за которое девочка спустится, равно t₂=S/V₂=S/2x (час) .
Скорость девочки на подъёме в 1,5 раза меньше, чем по ровной дороге, то есть равна V₃=x/1,5=2x/3 (км/час) .
Время, за которое девочка совершит подъём, равно
t₃=S/V₃=S/(2x/3)=3S/2x=3·(S/2x) (час)
Время спуска и подъёма равно
t₂+t₃=S/2x+3(S/2x)=4(S/2x)=2(S/x) (час)
Сравним это с t₁=3(S/x) .
Время, затраченное на прохождение ровной дороги,
больше в t₁/(t₂+t₃)=3/2=1,5 раза.
Время ,затраченное на прохождение дороги со спуском и подъёмом,
меньше в (t₂+t₃)/t₁=2/3 раза.
у - изготовил деталей за 1 день второй рабочий , по условию задачи имеем :
5х - 7у = 3
8х + 15у = 162 , решим уравнения системой уравнений . Первое уравнение умножим на 8 , а второе на 5 и от первого отнимем второе . Получим :
40х - 56у = 24
40х + 75у = 810
-56у - 75у = 24 - 810
- 131у = - 786
у = 6 деталей изготовил второй рабочий за день
Подставим полученное значение в первое уравнение : 5х - 7*6 = 3
5х = 3 + 42
5х = 45
х = 45/5
х = 9 деталей изготовил первый рабочий за 1 ден