при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины AB и AC: используем формулу:
находим координаты точки K:
теперь определим вид треугольника для этого используем теорему косинусов: для начала найдем длину BC:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
подставим значения:
cosB<0 поэтому угол тупой и треугольник тупоугольный ответ: треугольник тупоугольный
26,
т.к. по условию в графу ответа надо писать
Объяснение:
Из условия ни разу не ясно, что есть такое некая непонятная "его длина".
Но по всей видимости,
а) это диаметр условной окружности, которую образует Кольцевая линия.
б) это (ну, блин, грамотеи!) длина окружности, которую образует Кольцевая линия.
а) Найдем диаметр условной окружности, которую образует Кольцевая линия.
Обозначим её как d.
Площадь Центрального района S можно вычислить следующим образом:
где r - это радиус условной окружности Кольцевой, или половина диаметра, т.е. d/2. Отсюда.
б) Найдем длину окружности, которую образует Кольцевая линия. Обозначим её как l.
Длина окружности равна
где d - условный диаметр (см. (а)).
Согласно требованиям задачи в ответ записываем
т.е.
ответ: 26
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины AB и AC:
используем формулу:
находим координаты точки K:
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
подставим значения:
cosB<0 поэтому угол тупой и треугольник тупоугольный
ответ: треугольник тупоугольный