В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
алинтен
алинтен
21.06.2022 04:10 •  Алгебра

Даны точки А(3; 2) и В(1; 4). Отрезок АВ из точки А запишите координаты точки С, разделяющей в соотношении 1:2.

Показать ответ
Ответ:
ElizabetSnow
ElizabetSnow
10.11.2020 02:25

26,

т.к. по условию в графу ответа надо писать

l / \sqrt{\pi}

Объяснение:

Из условия ни разу не ясно, что есть такое некая непонятная "его длина".

Но по всей видимости,

а) это диаметр условной окружности, которую образует Кольцевая линия.

б) это (ну, блин, грамотеи!) длина окружности, которую образует Кольцевая линия.

а) Найдем диаметр условной окружности, которую образует Кольцевая линия.

Обозначим её как d.

Площадь Центрального района S можно вычислить следующим образом:

S = \pi r^2

где r - это радиус условной окружности Кольцевой, или половина диаметра, т.е. d/2. Отсюда.

S = \pi (d/2)^2 \: = \frac{\pi d {}^{2} }{4} = \\ = d {}^{2} = \frac{ 4S}{\pi} \: \: = d = \sqrt{\frac{ 4S}{\pi}} = 2{\frac{\sqrt{S}}{\sqrt{\pi}}} \\ d = 2 \frac{ \sqrt{169} }{\sqrt{\pi} } \: = 2 \times \frac{ 13 }{\sqrt{\pi} } = 26 / \sqrt{\pi}

б) Найдем длину окружности, которую образует Кольцевая линия. Обозначим её как l.

Длина окружности равна

l = \pi d

где d - условный диаметр (см. (а)).

l = \pi \times 26 / \sqrt{\pi}

l = 26 \times ( \pi / \sqrt{\pi})

l = 26 \sqrt{\pi}

Согласно требованиям задачи в ответ записываем

l = 26 (\sqrt{\pi} / \sqrt{\pi}) = 26

т.е.

ответ: 26

0,0(0 оценок)
Ответ:
Соня2343
Соня2343
17.12.2021 12:32
Так как AK - биссектриса, то:
\frac{BK}{AB}= \frac{KC}{AC} \ \ \textless \ =\ \textgreater \ \ \frac{BK}{KC}= \frac{AB}{AC}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda*x_2}{1+\lambda} \\y= \frac{y_1+\lambda*y_2}{1+\lambda} \\\lambda= \frac{m}{n}
ищем длины AB и AC:
используем формулу:
|AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|AB|=\sqrt{(-2-2)^2+(5-2)^2}=\sqrt{16+9}=5 \\|AC|=\sqrt{(-2-10)^2+5^2}=\sqrt{169}=13
\frac{BK}{KC}= \frac{AB}{AC}= \frac{5}{13} =\lambda
находим координаты точки K:
x_1=2;\ x_2=10;\ y_1=2;\ y_2=0;\ \lambda=\frac{5}{13} \\ \\K( \frac{2+ \frac{5}{13}*10 }{1+\frac{5}{13}} ;\frac{2+ \frac{5}{13}*0 }{1+\frac{5}{13}})=K( \frac{2+ \frac{50}{13} }{ \frac{18}{13}}; \frac{2}{ \frac{18}{13} })=K( \frac{ \frac{76}{13} }{ \frac{18}{13}}; \frac{26}{18} )=K( \frac{76}{18}; \frac{26}{18}) = \\=K( \frac{38}{9}; \frac{13}{9})=K(4 \frac{2}{9};1 \frac{4}{9} )
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
|BC|=\sqrt{(2-10)^2+2^2}=\sqrt{68}
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
AC^2=AB^2+BC^2-2*AB*BC*cosB \\2*AB*BC*cosB=AB^2+BC^2-AC^2 \\cosB= \frac{AB^2+BC^2-AC^2}{2*AB*BC}
подставим значения:
cosB= \frac{AB^2+BC^2-AC^2}{2*AB*BC}= \frac{25+68-169}{2*5*\sqrt{68}}= \frac{-76}{10\sqrt{68}} =- \frac{76}{10\sqrt{68}}
cosB<0 поэтому угол тупой и треугольник тупоугольный
ответ: K(4 \frac{2}{9};1 \frac{4}{9} );\треугольник тупоугольный
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота