Даны точки Q(-2;-1) , W(1;2) и E(2;0). Отрезок получен поворотом отрезка вокруг точки W на 90° против часовой стрелки. В ответ запишите сумму координат точек Q и E.
Довольно интересная задача. Можно решить, так сказать, в лоб, а можно подумать. В лоб - это выражаем отдельно a и b. или подставляем это во второе выражение и получаем обычное квадратное ур-ие.
Решаем, получаем b, с a будет аналогично. Но это не интересно. Давайте разложим сумму кубов по ФСУ
Смотрим внимательно и видим, или вспоминаем, что вторая скобка это неполный квадрат разницы, но через квадрат суммы также можно выразить. т.е. Давайте перепишем в таком виде
Как мы видим, все исходные данные у нас есть, осталось подставить.
Согласитесь, куда приятнее, чем решать квадратные ур-ия.
1) если в формуле содержатся углы 180° и 360° (π и 2π), то наименование функции не изменяется;если же в формуле содержатся углы 90° и 270° (π/2 и 3π/2), то наименование функции меняется на сходное (синус на косинус, тангенс на котангенс и т. д.);2) чтобы определить знак в правой части формулы (+ или—), достаточно, считая угол φ острым, определить знак выражения, стоящего в левой части формулы. sin(п-a)/2 cos(п/2+a) sin(п-a)=sina (во второй четверти sin +)2 cos(п/2+a)=2(-sina) (во второй четверти cos -) sina/-2sina=-1/2
В лоб - это выражаем отдельно a и b.
или подставляем это во второе выражение и получаем обычное квадратное ур-ие.
Решаем, получаем b, с a будет аналогично.
Но это не интересно.
Давайте разложим сумму кубов по ФСУ
Смотрим внимательно и видим, или вспоминаем, что вторая скобка это неполный квадрат разницы, но через квадрат суммы также можно выразить. т.е.
Давайте перепишем в таком виде
Как мы видим, все исходные данные у нас есть, осталось подставить.
Согласитесь, куда приятнее, чем решать квадратные ур-ия.