Пусть вся работа 1 Путь одному рабочему на всю работу нужно х дней, тогда второму (х-5) дней. Т.к. первый делает всю работу за х дней, то за 1 день он делает 1/х часть работы Т.к. второй рабочий делает всю работу за (х-5) дней , то за 1 день он делает 1/(х-5) часть работы Работали рабочие вместе 6 дней, значит они сделали вместе 6/х+6/(х-5), что по условию задачи является всей работой, получим уравнение 6/х+6/(х-5)=1 6*(х-5)+6х=х(х-5) 6х-30+6х=х²-5х х²-17х+30=0 D=(-17)²-4*1*30=169=(13)² х₁=(17+13)/2=15, х₂=(17-13)/2=2(посторонний корень, не удовлетворет условию задачи) Т.о. первый рабочий может сделать всю работу сам за 15 дней, второй за 15-5=10 дней ответ: 15 дней и 10 дней
Дана функция y(x)= –2·x–3.
1) y(1)= –2·1–3= –2–3= –5; y(–1)= –2·(–1)–3= 2–3= –1;
y(0)= –2·0–3= 0–3= –3; y(–1/2)= –2·(–1/2)–3= 1–3= –2;
2) Определим значения x, при которых y(x)=1:
–2·x–3=1 ⇔ –2·x= 1+3 ⇔ –2·x= 4 ⇔ x= –2;
Определим значения x, при которых y(x)= –1:
–2·x–3= –1 ⇔ –2·x= –1+3 ⇔ –2·x= 2 ⇔ x= –1;
Определим значения x, при которых y(x)=0:
–2·x–3=0 ⇔ –2·x= 3 ⇔ x= –3/2;
3) Определим значения x, при которых функция принимает отрицательные значения, то есть решаем неравенство y(x)<0:
–2·x–3<0 ⇔ –3 < 2·x ⇔ –3/2 < x ⇔ x∈(–3/2; +∞).