(x-1)(x+5)>0 Находим точки, в которых неравенство равно нулю: x-1=0 x=1 x+5=0 x=-5 Наносим на прямую (-∞;+∞) эти точки: -∞-51+∞ Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞) Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона: (-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ + (-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ - (1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ + -∞+-5-1++∞ ⇒ x∈(-∞;-5)U(1;+∞).
Находим точки, в которых неравенство равно нулю:
x-1=0 x=1
x+5=0 x=-5
Наносим на прямую (-∞;+∞) эти точки:
-∞-51+∞
Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞)
Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона:
(-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ +
(-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ -
(1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ +
-∞+-5-1++∞ ⇒
x∈(-∞;-5)U(1;+∞).
=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^4+1)(6^4-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^8-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^16-1)=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^32-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^64-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^128-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^256-1)]=1/5*6^1024-1/5[(6^512+1)(6^512-1)]=1/5*6^1024-1/5(6^1024-1)=1/5*6^1024-1/5*6^1024+1/5=0,2