В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Fadasa
Fadasa
01.09.2022 21:37 •  Алгебра

Даны векторы: ⃗a(−4;2),⃗b(−2;1),⃗c(6;2),⃗d(3;−2). Найти координаты и изобразить вектор:n ⃗=0,5(⃗+⃗)−2⃗+(⃗+⃗)

Показать ответ
Ответ:
SherriBlendi
SherriBlendi
12.02.2021 04:35

Задание 1.

1. 5x⁴x²x=5x⁷, коэффициент 5, степень одночлена 7

2. 4b*0,25a*3m=3abm, коэффициент 3, степень одночлена 3

3. 6x*(-4yz)=-24xyz, коэффициент -24, степень одночлена 3

4. -2,4n²*5n³*x= -12n⁵x, коэффициент -12, степень одночлена 6

5. -15a²*0,2a⁵b³*(-3c)=9a⁷b³c, коэффициент 9, степень одночлена 11

6. y²*(-x³)*y¹¹=-x³y¹³, коэффициент -1, степень одночлена 16

Задание 2.

1. 3n³, если = -2

3*-2³= 3*-8= -24.

2. -4,5xy², если x=1/9, y= -4

-4,5*1/9*-4²= -4,5*1/9*16= -8

3. 7/12ab³, если a= -1/7, b= -2

7/12*-1/7*-2³= 7/12*-1/7*-8= 2/3

4. 0,4m²nk, если m=0,5, n=6, k= -10

0,4*0,5²*6*-10= 0,4*0,25*6*-10= -6

Объяснение:

0,0(0 оценок)
Ответ:
SpaceRZX
SpaceRZX
08.02.2021 20:45
Составьте уравнение той касательной к графику функции y=ln3x, которая проходит через начало координат

Заметим, что данная функция не проходит через начало координат, а значит точка О(0;0) не является точкой касания. 

Пусть точка касания А(а;в)

составим уравнение касательной в точке А

\dispaystyle y_{kac}=y(x_0)+y`(x_0)*(x-x_0)

где y(x0)=в. x0=a

\dispaystyle y`(x)=(ln3x)`= \frac{1}{3x}*3= \frac{1}{x}

тогда уравнение касательной будет выглядеть так: 
\dispaystyle y_{kac}=b+ \frac{1}{a}(x-a)

и эта прямая проходит через точку О(0;0)
подставим эти координаты

\dispaystyle 0=b+ \frac{1}{a}(0-a)=b-1\\b=1

тогда уравнение касательной примет вид

\dispaystyle y_{kac}=1+ \frac{1}{a}(x-a)=1+ \frac{x}{a}-1= \frac{x}{a}

Так как касательная у нас проведена к нашей функции то у них есть общая точка пересечения

\dispaystyle \frac{x}{a}=ln3x

т.к. в=1, то а=е/3 (ln3x=1: 3x=e; x=e/3)

тогда

\dispaystyle \frac{e}{3a}=ln(3* \frac{e}{3})\\ \frac{e}{3a}=1\\a= \frac{e}{3}

 и тогда точка касания А(е/3;1)
уравнение касательной 
\dispaystyle y=\frac{x}{e/3}= \frac{3x}{e}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота