Пусть х учеников изучают только английский, у - только французский и z - и английский, и французски. Получаем, что ангийский изучают (х+z) учеников, а французский (y+z). Получаем систему из двух уравнений с тремя неизвестными. (x+z)/5=z (y+z)/7=z Отуда получаем x+z=5z y+z=7z
x=4z y=6z Всего в классе учеников x+y+z=4z+6z+z=11z z - натуральное число Так как в классе занято более 30 мест, то 11z>30 Так как в классе 20 двухместных парт, то 11z≤40 Получаем 30 <11z≤40 30/11 < z≤ 40/11 2,7 < z ≤ 3,6 z=3 В классе 33 ученика, 12 из них изучают только английский, 18 -только французский и 3 изучают оба языка
По согласованию со спрашивающим в знаменателе 3й дроби Х²-9
одз
x - 3 ≠ 0
x ≠ 3
x + 3 ≠ 0
x≠ -3
x² - 9≠ 0
x ≠ -3 ; x ≠ 3
2x 1 6
- =
x - 3 x + 3 x² - 9
2x * (x + 3) - 1*(x - 3) 6
=
( x - 3) * (x + 3) x² - 9
2x² + 6x - x + 3 6
=
x² - 9 x² - 9
2x² + 5x + 3 6
=
x² - 9 x² - 9
Умножаем обе части уравнения на (x² - 9). Избавляемся от знаменателей.
2x² + 5x + 3 = 6
2x² + 5x + 3 - 6 = 0
2x² + 5x - 3 = 0
D= 5² - 4 * 2 * (-3) = 25 + 24 = 49 > 0 ⇒ уравнение имеет 2 корня
x₁ = (-5 - (-7)) / (2*2) = (-5 + 7) / 4 = 2/4 = 1/2 = 0,5 (корень отвечает одз)
x₂ = (-5 - 7) / (2*2) = -12/4 = -3 (корень не отвечает одз)
Проверка
2* (1/2) 1 6
- =
1/2 - 3 1/2 + 3 (1/2)² - 9
1 / (-5/2) - 1 / (7/2) = 6 / (-35/4)
-1*2/5 - 1*2/7 = -6*4/35
-2*7/35 - 2*5/35 = -24/35
-14/35 - 10/35 = -24/35
-24/35 = -24/35
ответ: 1/2
Получаем, что ангийский изучают (х+z) учеников, а французский (y+z).
Получаем систему из двух уравнений с тремя неизвестными.
(x+z)/5=z
(y+z)/7=z
Отуда получаем
x+z=5z
y+z=7z
x=4z
y=6z
Всего в классе учеников x+y+z=4z+6z+z=11z
z - натуральное число
Так как в классе занято более 30 мест, то 11z>30
Так как в классе 20 двухместных парт, то 11z≤40
Получаем
30 <11z≤40
30/11 < z≤ 40/11
2,7 < z ≤ 3,6
z=3
В классе 33 ученика, 12 из них изучают только английский, 18 -только французский и 3 изучают оба языка