Пусть Х% серебра было во втором сплаве. Тогда (Х+25)% было серебра в первом сп. В первом сплаве было 4 кг серебра, значит, приняв за 100% вес первого сплава, получаем, что он весил (100*4)/(Х+25), а второй, соответственно, весил (100*8)/Х. Значит, третий сплав весит (100*4)/(Х+25)+(100*8)/Х кг. С другой стороны, известно, что в третьем (новом) сплаве стало 4+8=12 кг серебра, что составляет 30%. Получаем (12кг*100%)/30%=40кг - вес третьего сплава. Можем составить ур-е: (100*4)/(Х+25)+(100*8)/Х=40. Приводим его к виду Х^2-5*Х-500=0, получаем один корень Х=25 (второй корень отбрасываем, т.к. он отрицательный). В итоге первый сплав весит 400/(Х+25)=400/50=8 кг, второй 800/Х=800/25=32кг, а третий 40 кг
Покажем, и докажем, что утверждение верно так же для n=k+1.
Так как , следуя предположению то прибавив к данному выражению d. Мы получим следующий член . Т.е. предположение верно. Ч.Т.Д.
2)
База : 1 Проверка: .
Предположение:
Теперь покажем и докажем, что данное выражение верно и при :
Так как предыдущий член был равен k, то что бы узнать сумму первых k+1 членов, достаточно прибавить k+1 член (используя формулу которую мы доказали ранее):
т.е. мы пришли к изначальной формуле, если туда подставить k+1. Ч.Т.Д.
3) Это не формула общего члена, это формула суммы. При получается деление на ноль, поэтому сразу пишем База: 1
Предположим, что формула верна для: Покажем и докажем что формула верна для : Как и с суммой арифм.прогрессии. Мы добавим k+1 член к сумме.
База индукции: 1
проверено.
Предположим, что утверждение верно для n=k.
Покажем, и докажем, что утверждение верно так же для n=k+1.
Так как , следуя предположению то прибавив к данному выражению d. Мы получим следующий член .
Т.е. предположение верно. Ч.Т.Д.
2)
База : 1
Проверка: .
Предположение:
Теперь покажем и докажем, что данное выражение верно и при :
Так как предыдущий член был равен k, то что бы узнать сумму первых k+1 членов, достаточно прибавить k+1 член (используя формулу которую мы доказали ранее):
т.е. мы пришли к изначальной формуле, если туда подставить k+1. Ч.Т.Д.
3)
Это не формула общего члена, это формула суммы.
При
получается деление на ноль, поэтому сразу пишем
База: 1
Предположим, что формула верна для:
Покажем и докажем что формула верна для :
Как и с суммой арифм.прогрессии. Мы добавим k+1 член к сумме.
Ч.Т.Д.