По свойству обратной функции она симметрична прямой функции относительно прямой y = x.
Предположим, что у f(x) и g(x) есть точки пересечения, тогда эти точки являются общими для этих функций.
Но общая точка одна, а поскольку у каждой точки функции f(x), есть симметричная относительно y=x точка у функции g(x), то все точки пересечения функций f(x) и g(x) симметричны сами себе, то есть лежат на прямой y=x.
При этом если функция f(x) пересекает y=x в какой-то точке, то и g(x) пересекает y=x в этой же точке.
‥・Здравствуйте, tima0604! ・‥
• ответ:
Упрощённым выражением данного примера является решение -11+√21. (Альтернативный Вид: ≈ -6,41742.)
• Как и почему?
Для того, чтобы нам проверить правильность нашего ответа, то мы должны делать следующее:
• 1. Упростить корень √12: (√7-2√3)×(√7+3√3).
• 2. Перемножить выражения в скобках, то есть, раскрыть их: 7+3√21-2√21-18.
• 3. Вычислить разность чисел 7 и 18: 7-18=-11 → -11+3√21-2√21.
• 4. Привести подобные члены 3√21 и 2√21: -11+√21.
• Вывод: Таким образом, у нас в ответе получается корень -11+√21, а Альтернативный Вид этого корня является примерно -6,41742.
‥・С уважением, Ваша GraceMiller! :) ・‥
ответ: -2
Объяснение:
По свойству обратной функции она симметрична прямой функции относительно прямой y = x.
Предположим, что у f(x) и g(x) есть точки пересечения, тогда эти точки являются общими для этих функций.
Но общая точка одна, а поскольку у каждой точки функции f(x), есть симметричная относительно y=x точка у функции g(x), то все точки пересечения функций f(x) и g(x) симметричны сами себе, то есть лежат на прямой y=x.
При этом если функция f(x) пересекает y=x в какой-то точке, то и g(x) пересекает y=x в этой же точке.
Таким образом, уравнение:
f(x) = g(x)
Равносильно уравнению:
f(x) = x
x^5 + x + 32 = x
x^5 = -32
x = - 2