Все квадратные неравенства решаются с параболы. Для этого надо найти корни, поставить их на числовой прямой и посмотреть знаки параболы. 1) (х + 2)( х - 4) > 0 x1 = -2 и х2 = 4 -∞ + -2 - 4 + +∞ ответ: х∈(-∞; -2)∨(4; +∞) 2) 5х² +3х <0 x1 = 0, x2 = -0,6 -∞ + - 0, 6 - 0 + +∞ ответ: х∈(-∞; -0,6)∨(0; +∞) 3) х1= -1, х2 = -5/6, х = 2 -∞ - -1 + -5/6 - 2 + +∞ - + + + это знаки (х +1) - - + + это знаки (6х +5) - - - + это знаки (х - 2) Теперь поставим общий знак на числовой прямой и запишем ответ ответ: х∈(-1; -5/6)∨(2; +∞)
Пусть скорость первого х км/ч., тогда скорость второго (х+7)км/ч, превратим эту скорость в м/мин. Известно, в 1км 1000м, в часе 60мин., поэтому
1км/ч=1000м/60мин=50/3(м/мин.)
По условию стартовали одновременно, разница в расстоянии составляла 500м, когда первый пробежал 15минут со своей скоростью, а второй 10 мин. (15-5=10/мин./)со своей . Путь первого составил х*(50/3)*15=750х/3; а второго (х+7)*(50/3)*10=(х+7)*500/3. По условию задачи составим и решим уравнение.
1) (х + 2)( х - 4) > 0
x1 = -2 и х2 = 4
-∞ + -2 - 4 + +∞
ответ: х∈(-∞; -2)∨(4; +∞)
2) 5х² +3х <0
x1 = 0, x2 = -0,6
-∞ + - 0, 6 - 0 + +∞
ответ: х∈(-∞; -0,6)∨(0; +∞)
3) х1= -1, х2 = -5/6, х = 2
-∞ - -1 + -5/6 - 2 + +∞
- + + + это знаки (х +1)
- - + + это знаки (6х +5)
- - - + это знаки (х - 2)
Теперь поставим общий знак на числовой прямой и запишем ответ
ответ: х∈(-1; -5/6)∨(2; +∞)
Пусть скорость первого х км/ч., тогда скорость второго (х+7)км/ч, превратим эту скорость в м/мин. Известно, в 1км 1000м, в часе 60мин., поэтому
1км/ч=1000м/60мин=50/3(м/мин.)
По условию стартовали одновременно, разница в расстоянии составляла 500м, когда первый пробежал 15минут со своей скоростью, а второй 10 мин. (15-5=10/мин./)со своей . Путь первого составил х*(50/3)*15=750х/3; а второго (х+7)*(50/3)*10=(х+7)*500/3. По условию задачи составим и решим уравнение.
(х+7)*500/3-750х/3=500; (х+7)*500-750х=500*3; 500*(х+7-3)-750х=0;
500*(х+4)-750х=0; 500х+2000-750х=0; 750х-500х=2000; 250х=2000; х=8
Значит, скорость первого бегуна 8км/ч или 8*50/3=400/3=133 и 1/3 м/мин.