Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение:
1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение:
1/10 - производительность труда Ивана.
1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
Дана функция у= 20х3-Зх? 6х + 3.
Находим 1 и 2 производные:
У 3 60 х 2 - 6х -6.
у" = 120x - 6. Приравниваем её нулю:
120x - 6 = 0,
х 3D6/120 = 1/20= 0,05. у%3
2,695.
Это точка перегиба графика функции.
Имеем 2 интервала выпуклости, вогнутости: (-ю;0,05) и (0,05; +оо).
Находим знаки второй производной на полученных промежутках.
х = 1
0,05
y" = -6
о
о
114
Где вторая
производная меньше нуля, там график функции выпуклый, а где больше - вогнутый:
Выпуклая на промежутке: (-ю; 0,05).
Вогнутая на промежутках: (0,05; +оо).