Х - скорость первого велосипедиста (х - 5) - скорость второго велосипедиста 176/х - время, в течение которого первый велосипедист весь маршрут 176/ (х - 5) - время, в течение которого второй велосипедист весь маршрут Уравнение !76 / (х - 5) - 176 /х = 5 При х ≠ 5 приведём к общему знаменателю 176 * х - 176 * х + 176 * 5 = 5 * (х² - 5х) 5х² - 25х - 176 * 5 = 0 х² - 5х - 176 = 0 D = 25 - 4 * 1 * (- 176) = 25 + 704 = 729 D = √729 = 27 х₁ = (5 + 27) / 2 = 16 км/ч - искомая скорость первого велосипедиста х₂ = (5 - 27) / 2 = - 11 - отрицательное значение не удовлетворяет условию ответ: 16 км/ч
у = kx + b так как график проходит через начало координат, b = 0. подставим координаты точки М в уравнение 4 = k * (-2.5) Отсюда найдем k = 4/(-2.5) = -1.6 то есть искомая формула линейной функции у = -1,6х
Теперь, чтоб найти точку пересечения этого графика с прямой 3х-2у - 16 = 0, решим систему из 2 линейных уравнений у = -1,6х 3х-2у - 16 = 0 подставив у из первого уравнения во второе, получим 3х + 3,2х - 16 = 0 6,2х = 16 х = 16/6,2= 80/31 тогда у = -1,6 *80/31 = -128/31 То есть искомая точка пересечения (80/31; -128/31)
(х - 5) - скорость второго велосипедиста
176/х - время, в течение которого первый велосипедист весь маршрут
176/ (х - 5) - время, в течение которого второй велосипедист весь маршрут
Уравнение
!76 / (х - 5) - 176 /х = 5
При х ≠ 5 приведём к общему знаменателю
176 * х - 176 * х + 176 * 5 = 5 * (х² - 5х)
5х² - 25х - 176 * 5 = 0
х² - 5х - 176 = 0
D = 25 - 4 * 1 * (- 176) = 25 + 704 = 729
D = √729 = 27
х₁ = (5 + 27) / 2 = 16 км/ч - искомая скорость первого велосипедиста
х₂ = (5 - 27) / 2 = - 11 - отрицательное значение не удовлетворяет условию
ответ: 16 км/ч
у = kx + b
так как график проходит через начало координат, b = 0.
подставим координаты точки М в уравнение
4 = k * (-2.5)
Отсюда найдем k = 4/(-2.5) = -1.6
то есть искомая формула линейной функции у = -1,6х
Теперь, чтоб найти точку пересечения этого графика с прямой 3х-2у - 16 = 0, решим систему из 2 линейных уравнений
у = -1,6х
3х-2у - 16 = 0
подставив у из первого уравнения во второе, получим
3х + 3,2х - 16 = 0
6,2х = 16
х = 16/6,2= 80/31
тогда у = -1,6 *80/31 = -128/31
То есть искомая точка пересечения (80/31; -128/31)