Скорость Время Расстояние Течение реки 1 км/ч Байдарка с гребцами х км/ч по течению (х+1)км/ч всего 6 км против течения (х-1) км/ч 4,5 ч 6 км
Составляем уравнение: 6 / (х+1) + 6 / (х-1) = 4,5 приводим к общему знаменателю (х+1)(х-1) и отбрасываем его, заметив, что х≠1 и х≠-1 6(х-1)+6(х+1)=4,5(х2-1) 6х-6+6х+6=4,5х2-4,5 4,5х2-12х-4,5=0 |*2/3 3х2-8х-3=0 Д=64+36=100 х(1)=(8+10)/6=3 (км/ч) скорость байдарки с гребцами х(2)=(8-10)/6 = -1/3 < 0 не подходит под условие задачи, скорость >0
Нужно применить метод замены равносильным неравенством (равносильным по знаку). Сначала нужно преобразовать. logx^2_(x^2-2x+1)≤logx^2_x^2; Дальше такая замена logc_a≤logc_b;⇔ (c-1)*(a-b)≤0. используя эту теорему, можно записать: (x^2-1)*(x^2-2x+1-x^2)≤0; (x+1)(x-1)(-2x+1)≤0; умножим на минус 1, поменяем знак и получим (x+1)(x-1)(2x-1)≥0. Метод интервалов даст решение: x∈[-1;1/2]∨[1; + бесконечность). Теперь надо обязательно найти ОДЗ и пересечь с ним решение: ОДЗ: x^2>0; ⇒x≠0; x^2≠1; ⇒x≠ + - 1; (x-1)^2>0; ⇒x≠1. То есть по Одз исключаются точки -1, 0 и 1. ТОгда решением неравенства будет множество х, ∈ (-1;0) U (0;1/2] U (1;+бесконечность). А ответ не сходится потому, что это ответ для системы неравенств, если это С3
Течение реки 1 км/ч
Байдарка с гребцами х км/ч
по течению (х+1)км/ч всего 6 км
против течения (х-1) км/ч 4,5 ч 6 км
Составляем уравнение:
6 / (х+1) + 6 / (х-1) = 4,5
приводим к общему знаменателю (х+1)(х-1) и отбрасываем его, заметив, что х≠1 и х≠-1
6(х-1)+6(х+1)=4,5(х2-1)
6х-6+6х+6=4,5х2-4,5
4,5х2-12х-4,5=0 |*2/3
3х2-8х-3=0
Д=64+36=100
х(1)=(8+10)/6=3 (км/ч) скорость байдарки с гребцами
х(2)=(8-10)/6 = -1/3 < 0 не подходит под условие задачи, скорость >0
logx^2_(x^2-2x+1)≤logx^2_x^2;
Дальше такая замена logc_a≤logc_b;⇔ (c-1)*(a-b)≤0.
используя эту теорему, можно записать:
(x^2-1)*(x^2-2x+1-x^2)≤0;
(x+1)(x-1)(-2x+1)≤0; умножим на минус 1, поменяем знак и получим
(x+1)(x-1)(2x-1)≥0.
Метод интервалов даст решение: x∈[-1;1/2]∨[1; + бесконечность).
Теперь надо обязательно найти ОДЗ и пересечь с ним решение:
ОДЗ: x^2>0; ⇒x≠0;
x^2≠1; ⇒x≠ + - 1;
(x-1)^2>0; ⇒x≠1.
То есть по Одз исключаются точки -1, 0 и 1. ТОгда решением неравенства будет множество х, ∈ (-1;0) U (0;1/2] U (1;+бесконечность).
А ответ не сходится потому, что это ответ для системы неравенств, если это С3