Детская площадка имеет форму прямоугольника, площадь которого равна 224 м2. Одна его сторона на 2 метр(-ов, -а) больше, чем другая. Детской площадке необходимо построить бордюр. В магазине продаётся материал для бордюра в упаковках. В одной упаковке имеется 8 метров(-а) материала.
1. Вычисли длину и ширину детской площадки.
Меньшая сторона детской площадки (целое число) равна:
м.
Большая сторона детской площадки (целое число) равна:
м.
2. Вычисли, сколько упаковок материала для бордюра необходимо купить.
Необходимое количество упаковок равно:
2т^2-кт+4=0
8т^2-2кт+4=0
-4т^2+2кт-8=0
8т^2-2кт+4=0
4т^2-4=0
2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6,
если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2
ответ: к=6, х1=1, х2=2 или к= -6, х1= -1, х2= -2
Переведём на "простой язык":
Если вместо "х" в функцию подставим "-х" и при этом функция не изменится, то всё. данная функция - чётная.
Если вместо "х" в функцию подставим "-х" и при этом функция только поменяет знак, то всё. данная функция - нечётная.
итак, наши примеры: а) эта функция - ни чётная, ни нечётная
в)(х-4)(х-2) = х^2 -6x +8. данная функция у = х. Это нечётная функция.
с) это чётная функция.
d) это ни чётная, ни нечётная функция.
е) это нечётная функция ( числитель не помняет знак, а знаменатель поменяет, значит, вся дробь поменяет знак.
2) у = -2х+1 (у = 1 это прямая параллельная оси х. Симметричные точки относительно этой прямой поменяют знак ординаты)