2x²-4х+b=0 Это решается по дискриминанту вот формула D = b² - 4ac где а - это то число где x² где b - это то число где x где c - это то число где нет x Подставляем значения под формулу D = 4² - 4 * 2 * b = 16 - 8b = 8b дальше находим x1 и x2 по формуле х1= -b + квадратный корень из дискриминанта делим на 2а х2= -b - квадратный корень из дискриминанта делим на 2а Так же : если дискриминант отрицательный то корней нет если дискриминант равен нулю то корень только один если дискриминант больше нуля то уравнение имеет два корня
у = -х² + 2х + 10
Объяснение:
Квадратичная функция у = ах² + bx + c (1)
График её проходит через точку (0; 10)
Подставим координаты этой точки в формулу (1)
10 = а·0 + b · 0 + c ⇒ c = 10
Вершина параболы находится в точке (1; 11)
Подставим координаты этой точки в формулу (1)
11 = а + b + 10 ⇒ а + b = 1 (2)
Координата х вершины параболы вычисляется по формуле
х(верш) = -b/(2a)
x (верш) = 1, тогда b = -2a (3)
Подставим (3) в (2) а - 2а = 1 ⇒ а = -1
Тогда b = -2 · (-1) = 2
Квадратичная функция получилась такая
у = -х² + 2х + 10
Это решается по дискриминанту
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то число где x
где c - это то число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле
х1= -b + квадратный корень из дискриминанта
делим на 2а
х2= -b - квадратный корень из дискриминанта
делим на 2а
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня