Решаем уравнение х ( х² - 64 ) = 0 Произведение двух множителей равно нулю, когда хотя бы один из множителей равен нулю: х = 0 или х² - 64 =0 (х-8)(х+8)=0 х - 8 = 0 или х + 8 = 0 х = 8 или х = - 8 Отмечаем точки х=0 х = 8 и х = - 8 на числовой прямой и находим знаки функции у = х( х²- 64) на каждом промежутке. Можно найти на одном промежутке и потом знаки будут чередоваться. f ( 10) = 10·(10²- 64)>0 - + - + (-8)(0)(8) ответ. х∈ (-∞; - 8) U (0; 8)
1) Постройте график уравнения : x+| y | =5 ; x = 5 -| y | ; (график этой функции напоминает график функции у = - |х | _" уголок" , только ее вершина в точке B(5;0) , а лучи проходят соответственно через точки A(0 ; 5) и A(0 ;-5) (эти точки лежат на оси ординат _Oy ) . * * * лучи ( полупрямые ) распространяются влево * * * 2) Определите координаты и радиус окружности : x² + y² +7y= 0 ; (x-0)² +(y+7/2)² = (7/2)² ; Центр окружности в точке С(0 ; -7.2) || x=0 ; y =-7/2 на оси ординат || и ее радиус: R= 7/2.
х ( х² - 64 ) = 0
Произведение двух множителей равно нулю, когда хотя бы один из множителей равен нулю:
х = 0 или х² - 64 =0
(х-8)(х+8)=0
х - 8 = 0 или х + 8 = 0
х = 8 или х = - 8
Отмечаем точки
х=0 х = 8 и х = - 8 на числовой прямой и находим знаки функции у = х( х²- 64) на каждом промежутке.
Можно найти на одном промежутке и потом знаки будут чередоваться.
f ( 10) = 10·(10²- 64)>0
- + - +
(-8)(0)(8)
ответ. х∈ (-∞; - 8) U (0; 8)
x+| y | =5 ;
x = 5 -| y | ;
(график этой функции напоминает график функции у = - |х | _" уголок" , только ее вершина в точке B(5;0) , а лучи проходят соответственно через точки A(0 ; 5) и A(0 ;-5) (эти точки лежат на оси ординат _Oy ) . * * * лучи ( полупрямые ) распространяются влево * * *
2) Определите координаты и радиус окружности :
x² + y² +7y= 0 ;
(x-0)² +(y+7/2)² = (7/2)² ;
Центр окружности в точке С(0 ; -7.2) || x=0 ; y =-7/2 на оси ординат || и ее радиус: R= 7/2.