Дисциплина: семестр: 2класс: 10преподаватель ибатов а.ж.1) решить неравенство f'(x)> 0f(x)=x3 + 3x2+3x+12) вычислить f'(1)f(x)=3/2x+23) написать уравнение касательной к графикуf(x)=3x2+1, при xo=14) найти производную сложной функцииy=v7 – 8x5) исследовать функцию и построить графикy=x3+3х2
По условию (3м+4п) делится на 5, найдем разность: (3м+9п)-(3м+4п)=5п, сколько бы не стоили пирожные при умнжении на пять мы получим цену, за которую можно расплатиться пятирублевками. Отсюда следует, что (3м+9п) делится на 5,
(1м+3п) в три раза меньше чем(3м+9п), значит цена Катиной покупки будет делиться на 5 если(3м+9п)будет делится еще и на 3, а оно будет делится тк каждое слагаемое этой суммы делится на 3. Значит Катя сможет расплатиться пятирублевыми монетами.
ответ: да, сможет
Введём замену: у = tg(x/2).
Тогда sin(x) = 2y/(y²+1), cos(x) = (1-y²)/(y²+1).
Тогда исходное уравнение примет вид:
4*(2y/(y²+1))+3*((1-y²)/(y²+1))-3 = 0.
Раскроем скобки и приведём подобные.
(8у+3-3у²-3у²-3)/(у²+1) = 0.
(8у-6у²)/(у²+1) = 0.
Если дробь равна нулю, то нулю равен числитель.
8у-6у² = 0.
Сократим на -2:
3у²-4у = 0 или у(3у-4) = 0.
Отсюда у = 0 (этот корень не соответствует заданию),
3у-4 = 0.
у = (4/3).
Обратная замена: tg(x/2) = 4/3.
x/2 = arc tg(4/3)+πк,
x = 2arc tg(4/3)+2πк = 2(0,927295 + πk).
Заданию соответствует значение при к = 0, то есть:
х = 2arc tg(4/3) ≈ 1,85459.