В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ночнойфилин
ночнойфилин
26.05.2020 08:18 •  Алгебра

длина огорода имеющая форму прямоугольника на 5 м больше его ширины увеличив его длину на 2м а ширину на 5м получили новую площадь на 210м2 больше найди площадь нового участка/

Показать ответ
Ответ:
DianaMiss05
DianaMiss05
24.09.2022 00:01
(a-1)x^2-2x-a\ \textgreater \ 0
Если a=1, то получим линейное неравенство:
-2x-1\ \textgreater \ 0
\\\
x\ \textless \ - \frac{1}{2}
Полученный промежуток не включает в себя заданыый x\ \textgreater \ 3.
Рассматриваем случай, когда a \neq 1 - имеем квадратное неравенство.
Заданное неравенство ">0", в зависимости от знака старшего коэффициента общие решения неравенства можно записать в виде:
 - если старший коэффициент больше 0: x\in(-\infty;x_1)\cup(x_2;+\infty)
 - если старший коэффициент меньше 0: x\in (x_3;x_4)
Вывод: необходимо рассмотреть случай с положительным старшим коэффициентом: a-1\ \textgreater \ 0, тогда a\ \textgreater \ 1
Решаем неравенство. Приравниваем левую часть к нулю:
(a-1)x^2-2x-a=0
\\\
D_1=(-1)^2-(a-1)\cdot(-a)=a^2-a+1
Получившийся дискриминант всегда больше 0, т.к. a^2-a+1=a^2-2\cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} +1=(a- \frac{1}{2} )^2+ \frac{3}{4}\ \textgreater \ 0

x= \frac{1\pm \sqrt{a^2-a+1} }{a-1} 
\\\
\Rightarrow x\in(-\infty; \frac{1-\sqrt{a^2-a+1} }{a-1} )\cup( \frac{1+\sqrt{a^2-a+1} }{a-1} ;+\infty)
Чтобы получившийся ответ включал интервал х>3, необходимо потребовать выполнение следующего условия:
\frac{1+\sqrt{a^2-a+1} }{a-1} \leq 3
\\\
 \frac{1+\sqrt{a^2-a+1} -3(a-1)}{a-1} \leq 0
\\\
 \frac{4-3a+\sqrt{a^2-a+1} }{a-1} \leq 0
Так как в рассматриваемом случае a-1\ \textgreater \ 0, то можно перейти к следующему неравенству:
4-3a+\sqrt{a^2-a+1} \leq 0
\\\
\sqrt{a^2-a+1} \leq 3a-4
\\\
\begin{cases} a^2-a+1 \leq (3a-4)^2 \\ 3a-4\ \textgreater \ 0 \right \end{cases}
\\\
\begin{cases} a^2-a+1 \leq 9a^2-24a+16 \\ 3a\ \textgreater \ 4 \right \end{cases}
\\\
\begin{cases} 8a^2-23a+15 \geq 0 \\ a\ \textgreater \ \frac{4}{3} \right \end{cases}
\\\
\begin{cases} a\in(-\infty;1]\cup[ \frac{15}{8} ;+\infty) \\ a\ \textgreater \ \frac{4}{3} \right \end{cases}
Итоговое решение с учетом рассматриваемого ограничения a-1\ \textgreater \ 0: a\in[ \frac{15}{8} ;+\infty)
Искомое минимальное целое значение a_{min; \in Z}=2
ответ: 2
0,0(0 оценок)
Ответ:
Ashhhhhhhhhhhhh
Ashhhhhhhhhhhhh
24.07.2022 14:52

Розв'яжемо

1) x² - 3x + 9 > 0

Для початку знайдемо корені квадратного рівняння x² - 3x + 9 = 0. Використаємо формулу дискримінанту:

D = b² - 4ac = (-3)² - 4·1·9 = 9 - 36 = -27

Якщо дискримінант від'ємний, то рівняння не має дійсних коренів. Оскільки коефіцієнт a = 1 (додатній), то це означає, що квадратний термін завжди буде додатнім. Тому рівняння x² - 3x + 9 = 0 не має дійсних коренів, а отже, його знак не змінюється на відрізку між коренями. Отримаємо верхню межу цього виразу:

x² - 3x + 9 > 0 ⇔ x ∈ (-∞, ∞)

Отже, розв'язок першої нерівності - це всі дійсні числа.

2) x² ⩽ 36

Зведемо нерівність до канонічного вигляду:

x² - 36 ⩽ 0

Розв'яжемо рівняння x² - 36 = 0, знайдемо корені:

x₁ = -6, x₂ = 6

Отже, на відрізку [-6, 6] функція x² - 36 змінює знак з "плюс" на "мінус". Оскільки коефіцієнт a = 1 (додатній), то це означає, що функція x² - 36 завжди менше нуля на відрізку (-∞, -6) ∪ (6, ∞), а на відрізку [-6, 6] вона менше або дорівнює нулю. Отримаємо нижню межу цього виразу:

x² ⩽ 36 ⇔ x ∈ [-6, 6]

Отже, розв'язок другої нерівності - це відрізок [-6, 6].

Отже, розв'язок системи нерівностей - це перетин розв'язків кожної окремої нерівності, тобто відрізок [-6, 6].

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота