для автомата должны были изготовлены по 320 деталей. Первый автомат изготавливал в час на 4 деталей больше, чем второй, и поэтому закончил работу на часа раньше. Сколько деталей в час изготавливал каждый автомат?
если известно, что искомая прямая y₁ = k₁x +b₁ параллельна прямой y=-4x+51 (у=кх +b), то мы знаем коэффициент k₁ = -4 при x, т.к. у параллельных прямых коэффициенты k и к₁ при х равны.
тогда мы уже имеем "половину" уравнения у₁ = -4х +b₁
теперь для определения b₁ используем то, что искомая прямая проходит через точку M(-1; 3). это означает, что координаты точки должны удовлетворять уравнению у₁ = -4х +b₁. подставим эти координаты
3= -4*(-1) +b₁ тогда b₁ = -1
и искомое уравнение
у₁ = -4х -1
теперь проверим, принадлежит ли построенному графику точка N(-50; 200). подставим ее координаты в уравнение у₁ = -4х -1
200 ≠ -4*(-50)-1
точка N(-50; 200) ∉ графику функции у₁ = -4х -1
тогда строим график по двум точкам
х = -1 у₁(-1) = 3 точка M(-1; 3)
х = 0 у₁(0) = -1
на первом фото построение по двум точкам у₁ = -4х -1 ║y=-4x+51
на втором показано, что точка N(-50; 200). ∉ графику у₁ = -4х -1
1) Положим что 7 это один из катетов, тогда 5 либо второй катет (высота) или высота проведенная к гипотенузе, пусть 5 это высота к гипотенузе и b второй катет, тогда высота равна 7b/√(b^2+49)=5 , откуда b=35/√24 то есть такой катет существует, значит для первого случая возможны два варианта , это треугольники (катет,катет,гипотенуза)=(5,7,√74) и (7,35/√24,49/√24)
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к гипотенузе, пусть a,b тогда катеты , откуда ab/7=5 и a^2+b^2=49 ab=35 a^2+b^2=49
a=35/b откуда b^4-49b^2+1225=0 D<0 то есть не существует такого треугольника
Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.
Объяснение:
если известно, что искомая прямая y₁ = k₁x +b₁ параллельна прямой y=-4x+51 (у=кх +b), то мы знаем коэффициент k₁ = -4 при x, т.к. у параллельных прямых коэффициенты k и к₁ при х равны.
тогда мы уже имеем "половину" уравнения у₁ = -4х +b₁
теперь для определения b₁ используем то, что искомая прямая проходит через точку M(-1; 3). это означает, что координаты точки должны удовлетворять уравнению у₁ = -4х +b₁. подставим эти координаты
3= -4*(-1) +b₁ тогда b₁ = -1
и искомое уравнение
у₁ = -4х -1
теперь проверим, принадлежит ли построенному графику точка N(-50; 200). подставим ее координаты в уравнение у₁ = -4х -1
200 ≠ -4*(-50)-1
точка N(-50; 200) ∉ графику функции у₁ = -4х -1
тогда строим график по двум точкам
х = -1 у₁(-1) = 3 точка M(-1; 3)
х = 0 у₁(0) = -1
на первом фото построение по двум точкам у₁ = -4х -1 ║y=-4x+51
на втором показано, что точка N(-50; 200). ∉ графику у₁ = -4х -1
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к гипотенузе, пусть a,b тогда катеты , откуда ab/7=5 и a^2+b^2=49
ab=35
a^2+b^2=49
a=35/b
откуда b^4-49b^2+1225=0
D<0
то есть не существует такого треугольника
Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.