1.Докажем, что при любых значениях a и b верно равенство (a+b) 2=a 2+b 2+2ab или (a+b) 2=a 2+2ab+b 2. Доказательство. (a+b) 2=(a+b)(a+b)=a 2+ab+ab+b 2=a 2+b 2+2ab. Если в эту формулу вместо a и b подставить какие-нибудь выражения, то опять получится тождество. Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений. Докажем, что при любых значениях a и b верно равенство (a−b) 2=a 2+b 2−2ab или (a−b) 2=a 2−2ab+b 2. Доказательство. (a−b) 2=(a−b)(a−b)=a 2−ab−ab+b 2=a 2+b 2−2ab. Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений. 2. a=2/3 3. Выражение а + (b + с) можно записать без скобок: а + (b + с) = а + b + с. Эту операцию называют раскрытием скобок. Пример 1. Раскроем скобки в выражении а + ( – b + с). Решение. а + ( –b + с) = а + ( (–b) + с ) = а + (–b) + с = а – b + с. Если перед скобками стоит знак " + " , то можно опустить скобки и этот знак " + " , сохранив знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком " + " . – 2,87 + (2,87 – 1,5) = – 2,87 + 2,87 – 1,5 = 0 – 1,5 = – 1,5 . Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых: – (а + b) = –a – b . Обратите внимание, что отсутствие знака перед первым слагаемым в скобках подразумевает знак "+" . – ( а + b ) = – ( + а + b ) = – a – b . Чтобы раскрыть скобки, перед которыми стоит знак " – " , надо заменить этот знак на " + " , поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки. 4. Основные свойства уравнений 1.В любой части уравнения можно приводить подобные слагаемые или раскрывать скобку. 2.Любой член уравнения можно переносить из одной части уравнения в другую, изменив его знак на противоположный. 3.Обе части уравнения можно умножать (делить) на одно и то же число, кроме 0.
Во слишком много - ответы тоже краткие.
Объяснение:
1,1 f(-6) = 1/3*36 +12 = 24 - ответ.
1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ
2. Не допускается деление на 0.
Дано: y =x²-1*x-6 - квадратное уравнение.
Вычисляем дискриминант - D.
D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень
3 и -2 - корни уравнения - исключить из ООФ.
D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ
3,1
Дано: y = x²-4*x+3 - квадратное уравнение.
D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень
3 и 1 - нули функции.
Минимум посередине между нулями = (1+3)/2 = 2 = x.
Fmin(2) = -1
Вершина параболы в точке А(2;-1), ветви вверх.
1) E(f) = [-1;+∞) - область значений.
2) Убывает: х = (-∞;2)
3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ
4) Графики на рисунке в приложении.
5) Разрывы при делении на 0 в знаменателе.
х² ≠ 16 и х ≠ ± 4.
D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.