Для функції f знайдіть на вказаному проміжку І первісну F, графік якої проходить через дану точку М: 1) f(x)=2x+4, I=(-∞;∞), М(2;1) 2)f(x)=4x^3-2x+3, I=(-∞;∞), M(1;8)
У = х² - 6х + 13 производная функции: y' = 2x - 6 приравниваем производную к нулю 2х - 6 = 0 х = 3 - точка экстремума при х < 3 y' <0 → y↓ при х > 3 y' >0 → y↑ Следовательно х = 3 - точка минимума наименьшее значение функции на указанном отрезке унаим = уmin = у(3) = 3² - 6·3 + 13 = 4 наибольшее значение найдём, сравнив значения функции в точках на концах интервала х = 0 и х = 6 у(0) = 13; у(6) = 6² - 6 · 6 + 13 = 13 в обеих точках получились одинаковые значения, следовательно наибольшее значение функции на указанном интервале равно 13 ответ: унаиб = 13; унаим = 4
Тогда возможные трицифровые числа А с учетом кратности суммы цифр на 4, (в скобках А+6):
202 (208), 206 (212), 301 (307), 305 (312), 309(315),
211 (217), 215 (221), 219 (225), 310 (316) ,314 (320), 318 (324),
220 (226), 224 (230), 228 (234), 323 (329), 327(333),
233 (239), 237 (243), 332 (338) ,336 (342),
242 (248), 246 (252), 341 (347) ,345 (351), 349(355),
251 (257), 255 (261), 259 (265) ,350 (356), 354(360), 358(364),
260 (266), 264 (270), 268 (274) ,363 (369), 367(373),
273 (279), 277 (283), 372 (378) ,376 (382),
282 (288), 286 (292), 381 (387) ,385 (391), 389(395),
291 (297), 295 (301), 299 (305) ,390 (396),394 (400), 398(404)
откуда нужные числа 295 (301), 299(305), 394(400), 398(404)
производная функции:
y' = 2x - 6
приравниваем производную к нулю
2х - 6 = 0
х = 3 - точка экстремума
при х < 3 y' <0 → y↓
при х > 3 y' >0 → y↑
Следовательно х = 3 - точка минимума
наименьшее значение функции на указанном отрезке
унаим = уmin = у(3) = 3² - 6·3 + 13 = 4
наибольшее значение найдём, сравнив значения функции в точках на концах интервала
х = 0 и х = 6
у(0) = 13; у(6) = 6² - 6 · 6 + 13 = 13
в обеих точках получились одинаковые значения, следовательно наибольшее значение функции на указанном интервале равно 13
ответ: унаиб = 13; унаим = 4