Сначала определим время, за которое мотоциклист планировал проехать свой путь (первоначальная скорость=Х). t=120:X Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25). Можем составить уравнение: 120:Х =120:1,2Х + 0,25 Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение: 144 = 120 + 0,3Х -0,3Х = 120 - 144 -0,3Х = - 24 0,3Х = 24 Х = 24 : 0,3 Х = 80 (км\час, первоначальная скорость мотоциклиста). ПРОВЕРКА: 120:80=1,5 (часа) 120:96+0,25=1,5(часа).
t=120:X
Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25).
Можем составить уравнение:
120:Х =120:1,2Х + 0,25
Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение:
144 = 120 + 0,3Х
-0,3Х = 120 - 144
-0,3Х = - 24
0,3Х = 24
Х = 24 : 0,3
Х = 80 (км\час, первоначальная скорость мотоциклиста).
ПРОВЕРКА:
120:80=1,5 (часа)
120:96+0,25=1,5(часа).
Чтобы найти нули функции, заданной формулой y=f(x), надо решить уравнение f(x)=0.
А) f(x) = x² - 7x + 10
x² - 7x + 10 = 0
Корни уравнения находим по теореме Виета:
ответ: x₁ = 5, x₂ = 2
Б) f(x) = -x² + 5x - 7
-x² + 5x - 7 = 0
D = b² − 4ac = 5² - 4 * (-1) * (-7) = 25 - 28 = -3
ответ: нулей нет, т.к. D < 0
В) f(x) = 2x² - 8x - 8
2x² - 8x - 8 = 0
D = b² − 4ac = 64 + 4 * 2 * 8 = 64 + 64 = 128
ответ: x₁ = 2 + 2√2, x₂ = 2 - 2√2.
Г) f(x) = 6x² - 5x + 1
6x² - 5x + 1 = 0
D = b² − 4ac = 25 - 4 * 6 * 1 = 25 - 24 = 1
ответ: x₁ = 1/2, x₂ = 1/3.