Число 25 нужно разбить на 3 слагаемых, используя цифры от 0 до 9.
Единственная подходящая комбинация: 9+9+7=25.
Из 3-х цифр: 9, 9, 7 можно составить 3 трехзначных числа:
997
799
979
Нужно проверить, какое из этих чисел делится на 11.
Правило делимости на 11: число делится на 11, когда знакочередующаяся сумма его цифр делится на 11.
997 => 9+(-9)+7=7, 7 не делится на 11. значит 997 не делится на 11.
799 => 7+(-9)+9=7, 799 не делится на 11.
979 => 9+(-7)+9=9+9-7=18-7=11; 11/11=1 - 979 делится на 11.
ответ: средняя цифра 7
У нас 3 модуля
|1| |2| |3|
Нужно пассмотреть все варианты рещеений если |a| = 1) a
2) -a
какие будут варианты
1) |1|=1 |2|=2 |3|=3 корень 1 = 18
2) |1|=1 |2|=2 |3|=-3 2 комплексных корня
3) |1|=1 |2|=-2 |3|=3 корень -54/41
4) |1|=1 |2|=-2 |3|=-3 2 комплексных корня
4) |1|=-1 |2|=2 |3|=3 корень 80/11
6) |1|=-1 |2|=2 |3|=-3 2 комплексных корня
7) |1|=-1 |2|=-2 |3|=3 корень -80/33
8) |1|=-1 |2|=-2 |3|=-3 2 комплексных корня
у НАС ВСЯ числовая прямая разбита на 4 отрезка
(-oo; 0] [0; 3.25] [3.25; 6] [6; +oo]
Первый отрезек соответствует 8) варианту
Второй отрезек соответствует 6) варианту
Третий отрезек соответствует 2) варианту
Четвертый отрезек соответствует 1) варианту
Следовательно мы имеет всего 1 действительный корень = 18
Число 25 нужно разбить на 3 слагаемых, используя цифры от 0 до 9.
Единственная подходящая комбинация: 9+9+7=25.
Из 3-х цифр: 9, 9, 7 можно составить 3 трехзначных числа:
997
799
979
Нужно проверить, какое из этих чисел делится на 11.
Правило делимости на 11: число делится на 11, когда знакочередующаяся сумма его цифр делится на 11.
997 => 9+(-9)+7=7, 7 не делится на 11. значит 997 не делится на 11.
799 => 7+(-9)+9=7, 799 не делится на 11.
979 => 9+(-7)+9=9+9-7=18-7=11; 11/11=1 - 979 делится на 11.
ответ: средняя цифра 7
У нас 3 модуля
|1| |2| |3|
Нужно пассмотреть все варианты рещеений если |a| = 1) a
2) -a
какие будут варианты
1) |1|=1 |2|=2 |3|=3 корень 1 = 18
2) |1|=1 |2|=2 |3|=-3 2 комплексных корня
3) |1|=1 |2|=-2 |3|=3 корень -54/41
4) |1|=1 |2|=-2 |3|=-3 2 комплексных корня
4) |1|=-1 |2|=2 |3|=3 корень 80/11
6) |1|=-1 |2|=2 |3|=-3 2 комплексных корня
7) |1|=-1 |2|=-2 |3|=3 корень -80/33
8) |1|=-1 |2|=-2 |3|=-3 2 комплексных корня
у НАС ВСЯ числовая прямая разбита на 4 отрезка
(-oo; 0] [0; 3.25] [3.25; 6] [6; +oo]
Первый отрезек соответствует 8) варианту
Второй отрезек соответствует 6) варианту
Третий отрезек соответствует 2) варианту
Четвертый отрезек соответствует 1) варианту
Следовательно мы имеет всего 1 действительный корень = 18