С2+6с-40=0 Выделим в левой части полный квадрат. Для этого запишем выражение с2+6с в следующем виде: с2+6с=с2+2*3*с. В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате. Преобразуем теперь левую часть уравнения с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем: с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0 Таким образом, данное уравнение можно записать так: (с + 3)в квадрате - 49 =0, (х + 3)в квадрате = 49. Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
task/30683252 Найдите площадь фигуры | x - 5 | + | y + 9 | ≤ 4
решение рис. см ПРИЛОЖЕНИЕ
a) { x - 5 < 0 ; y + 9 ≥ 0 ; -(x - 5) + y + 9 ≤ 4. ⇔ { x< 5 ; y ≥ - 9 ; y ≤ x -10 . Δ ABP
б) { x - 5 ≥ 0 ; y + 9 ≥ 0 ; x - 5 + y + 9 ≤ 4. ⇔ { x≥ 5 ; y ≥ - 9 ; y ≤ - x . Δ BCP
в) { x - 5 ≥ 0 ; y + 9 < 0 ; x - 5 - (y + 9) ≤ 4. ⇔ { x ≥ 5 ; y <- 9 ; y ≥ x -18 . Δ СDP
г) { x - 5 < 0 ; y + 9 < 0 ; -(x - 5) - (y + 9) ≤ 4. ⇔{ x < 5 ; y <- 9 ; y ≥ - x - 8 . Δ DAP
A( 1; -9) , B(5; -5) , C(9; -9) , D(5; -13) AB || CD ; BC || AD ; AB⊥ BC
ABCD квадрат S =AC²/2 = 8²/2 =32 кв. единиц
ответ: 32 кв. единиц