Отвечал уже. 1) Повторяется цифра 1. Это 4 варианта: 11ххх, 1х1хх, 1хх1х, 1ххх1. В каждом варианте вместо первой х можно поставить любую цифру из 9: 0, 2, 3, 4, 5, 6, 7, 8, 9. Вместо второй х - любую их 8 оставшихся, вместо третьей х - любую из 7. Всего 4*9*8*7 = 2016 вариантов. 2) Повторяется цифра 0. Это 6 вариантов: 100хх, 10х0х, 10хх0, 1х00х, 1х0х0, 1хх00. В каждом варианте вместо первой х можно поставить любую из 8 цифр 2, 3, 4, 5, 6, 7, 8, 9. Вместо второй х - любую из оставшихся 7 цифр. Всего 6*8*7 = 336 вариантов. 3) Повторяется цифра 2. Это 6 вариантов: 122хх, 12х2х, 12хх2, 1х22х, 1х2х2, 1хх22. В каждом варианте вместо первой х можно поставить любую из 8 цифр 0, 3, 4, 5, 6, 7, 8, 9. Вместо второй х - любую из оставшихся 7 цифр. Всего 6*8*7 = 336 вариантов. 4 - 10) Повторяются цифры 3 - 9. Это каждый раз по 336 вариантов. Всего получается 2016 + 9*336 = 2016 + 3024 = 5040 вариантов.
1) Повторяется цифра 1. Это 4 варианта:
11ххх, 1х1хх, 1хх1х, 1ххх1.
В каждом варианте вместо первой х можно поставить любую цифру из 9:
0, 2, 3, 4, 5, 6, 7, 8, 9.
Вместо второй х - любую их 8 оставшихся, вместо третьей х - любую из 7.
Всего 4*9*8*7 = 2016 вариантов.
2) Повторяется цифра 0. Это 6 вариантов:
100хх, 10х0х, 10хх0, 1х00х, 1х0х0, 1хх00.
В каждом варианте вместо первой х можно поставить любую из 8 цифр
2, 3, 4, 5, 6, 7, 8, 9.
Вместо второй х - любую из оставшихся 7 цифр.
Всего 6*8*7 = 336 вариантов.
3) Повторяется цифра 2. Это 6 вариантов:
122хх, 12х2х, 12хх2, 1х22х, 1х2х2, 1хх22.
В каждом варианте вместо первой х можно поставить любую из 8 цифр
0, 3, 4, 5, 6, 7, 8, 9.
Вместо второй х - любую из оставшихся 7 цифр.
Всего 6*8*7 = 336 вариантов.
4 - 10) Повторяются цифры 3 - 9. Это каждый раз по 336 вариантов.
Всего получается 2016 + 9*336 = 2016 + 3024 = 5040 вариантов.
Решите уравнение относительно переменной x :
(а+1)x² -2x +1- а=0 .
1.
а+1 = 0 ⇔ а = -1 . * * * линейное уравнение * * *
- 2x +1- (-1) =0 ⇒ x = 1.
2.
а ≠ - 1 (квадратное уравнение)
D₁ = 1² -(1-a)(a+1) = 1 -(1-a²) = a² ≥ 0 имеет действительные решения при любом a .
x₁ = (1 -a) / (1+a) ;
x₂ =(1+a) / (1+a) .
В частности ,если D₁ =0 , т.е. при a =0 имеет 2 совпадающих корня: x₁ =x₂ =1. * * * x² -2x +1=0 ⇔(x -1)² =0 * * *
ответ: a = -1 ⇒ x = 1.
а ≠ - 1 ⇒ x₁ = (1 -a) / (1+a) ;
x₂ =(1+a) / (1+a) .