Если диагонали относятся как 3:4, то так же соотносятся и их половины. Представим прямоугольный треугольник, образованный двумя половинами диагоналей и одной стороной ромба. Искомый радиус будет высотой этого треугольника.
Прямоугольный треугольник, имеющий соотношение катетов 3:4, имеет их отношение с гипотенузой 3:4:5 (т.н. Пифагоров треугольник). Значит, если гипотенуза 25, то катеты - 20 и 15.
Падающая из прямого угла высота делит гипотенузу на две части, которые относятся друг к другу как прилежащие к ним катеты, т.е. их длины составят 4/7*25=100/7 и 3/7*25=75/7.
Теперь рассмотрим треугольник, образованный высотой (назовём её R), меньшим катетом 15 и прилежащей к нему частью гипотенузы 75/7. По теореме Пифагора:
15^2 = R^2 + (75/7)^2
Выразим R^2, приведём к общему знаменателю:
R^2 = 225 - 5625/49=(11025-5625)/49=5400/49
То есть R будет равно корню из этого числа. Корень получается некрасивым, возможно, в расчётах ошибка, но в целом ход решения такой
(2x²+5x+3)/(2x+3)=x²-x-2
разложим первую скобку на множители (можно по теореме виета, а можно через дискриминант и корни кв.уравнения):
2х²+5х+3 = (2х+3)*(х+1) тогда изначальное уравнение принимает вид:
(2х+3)*(х+1) / (2x+3)=x²-x-2
учитываем, что х не может быть равно -3/2 (деление на 0) ,
и сокращаем на 2х+3:
х+1 = x²-x-2 =(х+1)*(х-2)
отсюда получим два уравнения для двух корней: х+1 = 0 и х-2 = 1
т.е. один корень: х1=-1, второй: х2=3
проверяем, нет ли "запрещенных корней: -3/2 - их нет, значит,
ответ: два корня уравнения: х1=-1, х2=3
Если диагонали относятся как 3:4, то так же соотносятся и их половины. Представим прямоугольный треугольник, образованный двумя половинами диагоналей и одной стороной ромба. Искомый радиус будет высотой этого треугольника.
Прямоугольный треугольник, имеющий соотношение катетов 3:4, имеет их отношение с гипотенузой 3:4:5 (т.н. Пифагоров треугольник). Значит, если гипотенуза 25, то катеты - 20 и 15.
Падающая из прямого угла высота делит гипотенузу на две части, которые относятся друг к другу как прилежащие к ним катеты, т.е. их длины составят 4/7*25=100/7 и 3/7*25=75/7.
Теперь рассмотрим треугольник, образованный высотой (назовём её R), меньшим катетом 15 и прилежащей к нему частью гипотенузы 75/7. По теореме Пифагора:
15^2 = R^2 + (75/7)^2
Выразим R^2, приведём к общему знаменателю:
R^2 = 225 - 5625/49=(11025-5625)/49=5400/49
То есть R будет равно корню из этого числа. Корень получается некрасивым, возможно, в расчётах ошибка, но в целом ход решения такой