1) Раскрыть скобки: x^4-10x^3+35x^2-50x+24=0 2) Рассмотреть все числа на которые может делиться число 24. Это: 1,2,3,4,6,8,12,24 После проверки каждого числа подходит только 1. 1^4−10×1^3+35×1^2−50×1+24=0 60-60=0 3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1) => (x^3−9x^2+26x−24)(x−1)=0 4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0 В данном случае ответ будет (х-2) 5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0 6) Дальше я уже думаю Вы сами знаете как решать. 7) ответ: (x−4)(x−3)(x−2)(x−1)=0 х=1,2,3,4.
Даны координаты параллелограмма: А(1; -2; 3), В(3; 2; 1), D(6; 4; 4).
1) Так как сторона DС параллельна и равна АВ, то приращения координат по осям "x", "у" и "z" у них равны.
АВ: Δx = 3-1 = 2, Δу = 2-(-2) = 4, Δz = 1-3 = -2.
Отсюда х(С) = x(D) + Δx = 6+2 = 8,
у(С) = у(D) + Δу = 4 + 4 = 8.
z(C) = z(D) + Δz = 4 - 2 = 2.
ответ: С(8; 8; 2).
2) АВ = (2; 4; -2).
|AB| = √(4 + 16 + 4) = √24 = 2√6.
AD = (6-1; 4-(-2); 4-3) = (5; 6; 1).
|AD| = √(25 + 36 + 1) = √62.
3) cos A = (2*5 + 4*6 + (-2)*1)/(2√6*√62) = 32/(4√93) = 8√93/93 = 0,829561356.
4) S(ABCD) = AB*AD*sin A = 2√6*√62*0,558415577 = 21,54065922.
x^4-10x^3+35x^2-50x+24=0
2) Рассмотреть все числа на которые может делиться число 24.
Это: 1,2,3,4,6,8,12,24
После проверки каждого числа подходит только 1.
1^4−10×1^3+35×1^2−50×1+24=0
60-60=0
3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1)
=> (x^3−9x^2+26x−24)(x−1)=0
4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0
В данном случае ответ будет (х-2)
5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0
6) Дальше я уже думаю Вы сами знаете как решать.
7) ответ: (x−4)(x−3)(x−2)(x−1)=0
х=1,2,3,4.