Объяснение:
1. 1,5 • 62 – 23=93-23=70.
***
2. 1) x^8 • x^2; =x^(8+2)=x^10;
2) x^8 : x^2=x^(8-2)=x^6;
3) (x^8)^2=x^(8*2)=x^16;
4) ((x^4)^5 • x^2)/x^12=x^(4*5)*x^2/x^12=x^(20+2)/x^12=x^(22-12)=x^10.
3. 1) –3*a^2*b^4 • 3a^2 • b^5= -9*a^4*b^9;
2) (–4a^2*b^6)^3=(-4)^3*(a^2)^3*(b^6)^3= -64a^6*b^18.
4. (5x^2 + 6x – 3) – (2x^2 – 3x – 4) = 5x^2 + 6x – 3 – 2x^2 + 3x + 4 =3x²+9x+1.
5. 1) (46 • 29) / 324=1334/324=4 38/324=4 1/162 ;
2) (2 2/3)^5 • (3/8)^6=(8/3)^5*(3/8)^6=(8/3)^5*(8/3)^(-6)=(8/3)^(-1)=3/8.
6. 125а^6b^3 • (–0,2a^2b^4)^3= 125*(-0,2)^3*a^6*b^12 = =-125*0,008*a^6*b^12=a^6*b^12.
Высота на продолжения BC
AH =AC/2 =5 (<ACH =180 - <ACB = 180° -150°=30° ).
2) CH =√(BC² - BH²) =√(15² -12²) =9 ;
CH ² =AH *BH⇒AH = CH²/BH =81/12 =27/4 .
или BC² =AB*BH;
15² =(12+AH)*12⇒AH = 15²/12 -12 =81/12 =27/4.
3) CH = AC*cos(180° - <ACB) =4*( -cos<ACB) =4*0,8 =3,2.
4) AH= √(AC² -CH²) =√(27² -21,6²) =16,2.
***√(27 -21,6)(27+21,6) =√5,4*48,6 =√9*0,6*0,6*81=3*9*0,6 =16,2***
AC² =AB*AH =AH(AH +HB) ;
27² =16,2(16,2+HB) ⇒HB = 27²/16,2 -16,2² =28,8.
AB = AH +HB =16,2+28,8 =45.
BC = √(AB² -AC)² =√(45² -27²) =√(45 -27)(45 +27) =√(18*72) =√(9*2*2*36) =3*2*6 =36.
BC =36.
Объяснение:
1. 1,5 • 62 – 23=93-23=70.
***
2. 1) x^8 • x^2; =x^(8+2)=x^10;
2) x^8 : x^2=x^(8-2)=x^6;
3) (x^8)^2=x^(8*2)=x^16;
4) ((x^4)^5 • x^2)/x^12=x^(4*5)*x^2/x^12=x^(20+2)/x^12=x^(22-12)=x^10.
***
3. 1) –3*a^2*b^4 • 3a^2 • b^5= -9*a^4*b^9;
2) (–4a^2*b^6)^3=(-4)^3*(a^2)^3*(b^6)^3= -64a^6*b^18.
***
4. (5x^2 + 6x – 3) – (2x^2 – 3x – 4) = 5x^2 + 6x – 3 – 2x^2 + 3x + 4 =3x²+9x+1.
***
5. 1) (46 • 29) / 324=1334/324=4 38/324=4 1/162 ;
2) (2 2/3)^5 • (3/8)^6=(8/3)^5*(3/8)^6=(8/3)^5*(8/3)^(-6)=(8/3)^(-1)=3/8.
***
6. 125а^6b^3 • (–0,2a^2b^4)^3= 125*(-0,2)^3*a^6*b^12 = =-125*0,008*a^6*b^12=a^6*b^12.