Для некоторой реки установили следующую зависимость скорости течения реки v (м/с) от глубины h (м): h) = -52 + 6h + 11. Найди максимальную глубину реки (где у = 0).
На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
тогда хорда CD=2KD=2*15*√3/2=15√3
ответ хорда CD=15√3
(1+4x-x²)-20/(4x-x²)>0
((1+4x-x²)(4x-x²)-20)/(x(4-x))>0
(4x+16x²-4x³-x²-4x³+x⁴-20)/(x(4-x))>0
(x⁴-8x³+15x²+4x-20)/(x(4-x)>0
x⁴-8x³+15x²+4x-20=0
x₁=2
x⁴-8x³+15x²+4x-20 I_x-2_
x⁴-2x³ I x³-6x²+3x+10
-6x³+15x²
-6x³+12x²
3x²+4x
3x²-6x
10x-20
10x-20
0
x³-6x²+3x+10=0
x₂=2
x³-6x²+3x+10 I_x-2_
x³-2x² I x²-4x-5
-4x²+3x
-4x²+8x
-5x+10
-5x+10
0
x²-4x-5=0 D=36
x₃=-1 x₄=5. ⇒
(x-2)²(x+1)(x-5)/(x(4-x)>0
-∞--1+0__-__2__-__4+5-+∞
x∈(-1;0)U(4;5).
∑дл. инт.=(0-(-1))+(5-4)=1+1=2.
ответ: ∑дл. инт.=2.