. Для параллелограмма ABCD (рис. 4.4) выразите вектор: a) Ас б) BD через векторы AB и AD. E D D С F. С о A B B Рис. 4.3 Рис. 4.4 тагонали параллелограмма ABCD пересекаются в точке с. 4.4). Выразите вектор: a) АО; б) ВО через векторы AB и A агонали параллелограмма ABCD пересекаются в точке . 4.4). Выразите вектор: a) AB; 6) AD через векторы 40 и
Число a должна иметь вид : a =36k +18 .
Т.к. число a трехзначное, то 100<36k+18 <1000 ⇔3 ≤ k ≤ 27.
Количество таких чисел: n=27-(3-1) = 25 .
a∈{ 126 ; 162 , 198 ; ...972} * * * Составляют арифметическую прогрессию * * *
* ! 702 = 126 +(n-1)36⇒n=17 * * *
702 =36k+18 при k =19.
* * * P.S. * * *
a = 9x = 4y +2 ; || 100 <9x <1000⇔12 <x ≤111 ||
y =(9x -2)/4 ;
y = 2x + (x-2)/4 ; k= (x-2)/4⇒x=4k+2 . || y =2x+k =2(4k+2)+k =9k+4 ||
⇒ { x =4k +2 . y =9k+4 .
|| 12 ≤ 4k+2 ≤ 111⇔2,5 ≤ k ≤27,25 ; 3 ≤ k ≤ 27 ||
a =9x =36k+18.
число a =9x =9(4k +2) =36k +18.
так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6