Для положительных чисел a, b и c равенство (a+b)*c = a*c+b*c можно проиллюстрировать с вычисления площади прямоугольника двумя площадь прямоугольника ABCD, а a*c и b*c - площади прямоугольников ABMN и NMCD соответственно. Придумай иллюстрацию равенства (a-b)*c = a*c-b*c для положительных чисел a,b,c (a>b).
Арифметической прогрессией называется такая последовательность, у которой каждый ее член, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d,которое называется разностью прогрессии.
Для всех элементов прогрессии, начиная со второго выполнимо равенство:
Если d > 0, то прогрессия является возрастающей. Если d < 0, то прогрессия является убывающей.
Арифметическая прогрессия считается конечной, если рассматриваются только ее первые несколько членов.
= + d = (+ d) + d = + 2d,
= + d = (+ 2d) + d = + 3d,
= + d(n-1)
= + d(n-1) - формула n-го члена арифметической прогрессии.(n≥1)
Пример
3,6,9,12,15,18,21,24,27,30 — арифметическая прогрессия из десяти членов с шагом 3.
Свойства
1.
2.Если шаг d > 0, прогрессия является возрастающей; если d < 0, — убывающей.
3.Любой член арифметической прогрессии, начиная со второго, является средним арифметическим предыдущего и следующего члена прогрессии:
.
Обратное также верно, то есть это свойство является признаком арифметической прогрессии.Доказательство:
Обратное аналогично
4.Сумма n первых членов арифметической прогрессии может быть выражена формулами
Доказательство:Через сумму:
По индукции:
5.Сумма n последовательных членов арифметической прогрессии начиная с члена k:
6.Пример суммы арифметической прогрессии является сумма ряда натуральных чисел до n включительно:
Задача 1.При делении девятого члена арифметической прогрессии на второй член в частном получается 5, а при делении тринадцатого члена на шестой член в частном получается 2 и в остатке 5. Найти первый член и разность прогрессии.
Решение: …,- арифметическая прогрессия
: остаток 5)
Используя формулу n-го члена прогрессии получаем систему уравнений:
Откуда 4(2d-5)=3d,то 5d=20,то d=4
=3
ответ: d=4
Задача 2. Известно, что при любом n сумма Sn членов некоторой арифметической прогрессии выражается формулой Sn=4n²-3n. Найти три первых члена этой прогрессии.
Решение:
Пусть n=1 .
Пусть n=2 .
Так как ,то
ответ: ,,
Заметим, что в системе х встречается только во второй степени. Поэтому, если некоторая пара (х; у) - решение системы, то и пара (-х; у) - решение системы. Так как по заданию система должна иметь только одно решение, то необходимо выполнение условия х=-х. Это достигается только при х=0.
Подставляя значение х=0 в систему, получим:
Проверим, удовлетворяют ли значения р=1 и р=-1 условию.
При р=1:
Данный случай не подходит, так как система имеет три решения.
При р=-1:
Данный случай подходит, система действительно имеет одно решение.
Кроме того, можно было построить графики уравнений:
- окружность с центром в точке (0; 0) и радиусом 1
- стандартная парабола ветвями вниз с вершиной в точке
(0; р). Двигая эту параболу вдоль оси ординат, можно убедиться, что единственное пересечение с окружностью происходит лишь при р=-1.
ответ: р=-1