Для школьного праздника закупают подарки — фрукты, расфасованные в пакеты. Каждый пакет с мандаринами стоит 30 рублей, а с яблоками — 25 рублей.
Сколько разных подарков можно купить на 1100 рублей?
Сколько подарков можно купить на ту же сумму, если дополнительно поставлено условие, что количество разных подарков должно быть одинаковым?
А 16 км В
> х км/ч ? (х + 9) км/ч <
1,5 ч = 90 мин = 90/60 = 3/2 ч
20 мин = 20/60 = 1/3 ч
Уравнение:
х · (3/2 + 1/3) + (х + 9) · 1/3 = 16
3/2х + 1/3х + 1/3х + 9/3 = 16
9/6х + 2/6х + 2/6х + 3 = 16
13/6х = 16 - 3
13/6х = 13
х = 13 : 13/6
х = 13/1 · 6/13
х = 6 (км/ч) - скорость пешехода
6 + 9 = 15 (км/ч) - скорость велосипедиста
ответ: 6 км/ч и 15 км/ч.
Проверка:
6 · (3/2 + 1/3) = 6 · 11/6 = 66/6 = 11 км - пройдёт пешеход за 1 ч 50 мин
15 · 1/3 = 15/3 = 5 км - проедет велосипедист за 20 мин
11 + 5 = 16 км - расстояние между пунктами
Объяснение:
Систем нету, поэтому решу только две задачи.
1. Купюры на 500 руб, всего 22 штуки.
{ 50x + 10y = 500
{ x + y = 22
Делим 1 уравнение на 10
{ 5x + y = 50
{ x + y = 22
Вычитаем из 1 уравнения 2 уравнение
5x + y - x - y = 50 - 22
4x = 28
x = 7 купюр по 50 рублей.
y = 22 - x = 22 - 7 = 15 купюр по 10 рублей.
2. Прямая y = kx + b; A(5; 0); B(-2; 21)
Подставляем координаты вместо х и у.
{ 0 = k*5 + b
{ 21 = k*(-2) + b
Из 1 уравнения вычитаем 2 уравнение
0 - 21 = 5k + b - (-2)k - b
-21 = 7k
k = -21/7 = -3
b = -5k = -5*(-3) = 15
Прямая y = -3x + 15