Чтобы найти точку пересечения прямых данной системы уравнений нужно перенести все члены каждого из уравнений в правую часть со сменой знака, а в левой части оставить переменную .
Теперь необходимо составить таблицу для переменных и , чтобы можно было подставлять значения выражений. После этого мы чертим координатную плоскость и находим точку пересечения прямых.
Затем можем приступать к координатной плоскости. По координатам в таблице чертим две прямые и рассматриваем точку, в которой они пересекаются. Остальное решение дано во вложении. Это приблизительная координата точки пересечения прямых.
метод подстановки.
Чтобы найти точку пересечения прямых данной системы уравнений нужно перенести все члены одного из уравнений в правую часть со сменой знака, а в левой части оставить переменную .
Теперь подставляем во первом уравнении вместо запись второго уравнения, а затем решим новое уравнение.
Это мы нашли значение переменной и в тоже время координату оси абсцисс для точки пересечения прямых. Теперь найдём координату оси ординат.
Запишем в ответ точную координату точки пересечения данных прямых.
20 (км/час) - собственная скорость катера
Объяснение:
х - собственная скорость катера
х+2 - скорость катера по течению
х-2 - скорость катера против течения
88/х+2 - время по течению
72/х-2 - время против течения
По условию задачи на весь путь ушло 8 часов, уравнение:
88/х+2+72/х-2=8
Избавляемся от дробного выражения, общий знаменатель (х-2)(х+2) или х²-4, надписываем над числителями дополнительные множители:
88(х-2)+72(х+2)=8(х²-4)
88х-176+72х+144=8х²-32
160х-32=8х²-32
-8х²+32+160х-32=0
8х²-160х=0/8 разделим на 8 для удобства вычислений:
х²-20х=0
х(х-20)=0
х₁=0, отбрасываем, как не отвечающий условию задачи
х-20=0
х=20
х₂=20 (км/час) - собственная скорость катера
Проверка:
88 : (20+2)=4 (часа) по течению
72 : (20-2)=4 (часа) против течения
Всего 8 часов, всё верно.
Чтобы найти точку пересечения прямых данной системы уравнений нужно перенести все члены каждого из уравнений в правую часть со сменой знака, а в левой части оставить переменную .
Теперь необходимо составить таблицу для переменных и , чтобы можно было подставлять значения выражений. После этого мы чертим координатную плоскость и находим точку пересечения прямых.
Затем можем приступать к координатной плоскости. По координатам в таблице чертим две прямые и рассматриваем точку, в которой они пересекаются. Остальное решение дано во вложении. Это приблизительная координата точки пересечения прямых.
метод подстановки.Чтобы найти точку пересечения прямых данной системы уравнений нужно перенести все члены одного из уравнений в правую часть со сменой знака, а в левой части оставить переменную .
Теперь подставляем во первом уравнении вместо запись второго уравнения, а затем решим новое уравнение.
Это мы нашли значение переменной и в тоже время координату оси абсцисс для точки пересечения прямых. Теперь найдём координату оси ординат.
Запишем в ответ точную координату точки пересечения данных прямых.
ответ: