ответ: x₁;₂ = ±√(5/2); x₃;₄ = ±√(3/2)
Объяснение:
нужно раскрыть модуль по определению...
известно: или |-1| = 1 или |+1| = 1
т.е. возможны два случая: или |4-x²|-x² = -1 или |4-x²|-x² = +1
или |4-x²| = x²-1 или |4-x²| = x²+1
и вновь раскрыть модуль по определению...
1) 4-x² = -(x²-1) ---> 4=1 нет решений
2) 4-x² = x²-1 ---> 2x²=5 ---> x = ±√2.5
3) 4-x² = -(x²+1) ---> 4=-1 нет решений
4) 4-x² = x²+1 ---> 2x²=3 ---> x = ±√1.5
и обязательно сделать проверку))
2) x²=2.5 ---> ||4-2.5|-2.5| = |1.5-2.5| = |-1| = 1 верно
4) x²=1.5 ---> ||4-1.5|-1.5| = |2.5-1.5| = |1| = 1 верно
Пусть t = sinx, t ∈ [-1; 1].
2t² + 3t - 5 = 0
D = 9 + 4•5•2 = 49 = 7²
t1 = (-3 + 7)/4 = 4/4 = 1
t2 = (-3 - 7)/4 = -10/4 - не уд. условию
Обратная замена:
sinx = 1
x = π/2 + 2πn, n ∈ Z.
2) 10sin²x - 17cosx - 16 = 0
10 - 10cos²x - 17cosx - 16 = 0
-10cos²x - 17cosx - 6 = 0
10cos²x + 17cosx + 6 = 0
Пусть t = cosx, x ∈ [-1; 1].
D = 289 - 4•6•10 = 49 = 7²
t1 = (-17 + 7)/20 = -10/20 = -1/2
t2 = (-17 - 7)/20 = -24/20 - не уд. условию
Обратная замена:
cosx = -1/2
x = ±arccos(-1/2) + 2πn, n ∈ Z
x = ±2π/3 + 2πn, n ∈ Z.
3) 5sin²x + 17sinxcosx + 6cos²x = 0
Разделим на cos²x.
5tg²x + 17tgx + 6 = 0
Пусть t = tgx.
D = 289 - 6•4•5 = 289 - 120 = 13²
t1 = (-17 + 13)/10 = -4/10 = -2/5
t2 = (-17 - 13)/10 = -30/10 = -3
Обратная замена:
tgx = -2/5
x = arctg(-2/5) + πn, n ∈ Z.
x = arctg(-3) + πn, n ∈ Z.
4) 3tgx - 14ctg + 1 = 0
3tgx - 14/tgx + 1 = 0
3tg²x + tgx - 14 = 0
Пусть t = tgx.
3t² + t - 14 = 0
D = 1 + 14•4•3 = 13²
t1 = (-1 + 13)/6 = 12/6 = 2
t2 = (-1 - 13)/6 = -14/6 = -7/3
обратная замена:
tgx = 2
x = arctg2 + πn, n ∈ Z
tgx = -7/3
x = arctg(-7/3) + πn, n ∈ Z.
ответ: x₁;₂ = ±√(5/2); x₃;₄ = ±√(3/2)
Объяснение:
нужно раскрыть модуль по определению...
известно: или |-1| = 1 или |+1| = 1
т.е. возможны два случая: или |4-x²|-x² = -1 или |4-x²|-x² = +1
или |4-x²| = x²-1 или |4-x²| = x²+1
и вновь раскрыть модуль по определению...
1) 4-x² = -(x²-1) ---> 4=1 нет решений
2) 4-x² = x²-1 ---> 2x²=5 ---> x = ±√2.5
3) 4-x² = -(x²+1) ---> 4=-1 нет решений
4) 4-x² = x²+1 ---> 2x²=3 ---> x = ±√1.5
и обязательно сделать проверку))
2) x²=2.5 ---> ||4-2.5|-2.5| = |1.5-2.5| = |-1| = 1 верно
4) x²=1.5 ---> ||4-1.5|-1.5| = |2.5-1.5| = |1| = 1 верно