Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Прямоугольный участок земли, который прилегает к стене дома нужно огородить забором длиной 160 метров;
Необходимо найти длину прямоугольника в метрах при которой площадь участка будет наибольшей;
Длина забора 160 м будет равна в сумме двум сторонам "a" и двум сторонам "b" прямоугольника;
Пусть "a" будет длиной прямоугольника, соответственно больше чем ширина "b";
(a + b) × 2 = 160;
a + b = 80;
Значит a, b могут быть любыми числами, которые выполняют условие;
1. (10 + 70) × 2 = 160;
Находим площадь:
10 × 70 = 700 метрам квадратных;
2. (20 + 60) × 2 = 160;
Находим площадь:
20 × 60 = 1200 метрам квадратных;
3. (30 +50) × 2 = 160;
Находим площадь:
30 × 50 = 1500 метрам квадратных;
4. (40 + 40) × 2 = 160;
Но это уже не прямоугольник;
Далее при наших поставленных числах - ответы будут повторяться, поэтому выбираем оптимальный вариант из того, что есть;
Это длина 50 и ширина 30 метров, и по условию задачи они дают наибольшую площадь.
Объяснение:
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.