Дмитрий Сычев из «Локомотива» в целях поддержания интереса к футболу у подростков должен посетить 10 школ Перми для детей с дивиантным поведением. Всего в городе 30 таких школ. Сколькими он может сделать выборку? Очень с решением сделать.
Рензи профессор Отметить как нарушение Игральные кости - это кубики с 6 гранями. На первом кубике может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому варианту выпадения очков соответствует 6 вариантов выпадения очков на втором кубике. Т.е. всего различных вариантов 6*6 = 36. Варианты (исходы эксперимента) будут такие: 1;1 1;2 1;3 1;4 1;5 1;6 2;1 2;2 2;3 2;4 2;5 2;6 и т.д. 6;1 6;2 6;3 6;4 6;5 6;6 Подсчитаем количество исходов (вариантов), в которых сумма очков двух кубиков равна 8. 2;6 3;5; 4;4 5;3 6;2 Всего 5 вариантов. Найдем вероятность. 5/36 = 0,138 ≈ 0,14
2) Возможен такой вариант решения. Какие возможны исходы двух бросаний монеты? 1) Решка, решка. 2) Решка, орел. 3) Орел, решка. 4) Орел, орел. Это все возможные события, других нет. Нас интересует вероятность 2-го или 3-го события. Всего возможных исходов 4. Благоприятных иcходов – 2. Отношение 2/4 = 0,5.
1) благоприятных вариантов 4 (1,2,3,4), а всего вариантов 6 ( 1, 2,3,4,5,6). вероятность равна 4:6 = 2/3
Т.е. всего различных вариантов 6*6 = 36.
Варианты (исходы эксперимента) будут такие:
1;1 1;2 1;3 1;4 1;5 1;6
2;1 2;2 2;3 2;4 2;5 2;6
и т.д.
6;1 6;2 6;3 6;4 6;5 6;6
Подсчитаем количество исходов (вариантов), в которых сумма очков двух кубиков равна 8.
2;6 3;5; 4;4 5;3 6;2 Всего 5 вариантов.
Найдем вероятность. 5/36 = 0,138 ≈ 0,14
2) Возможен такой вариант решения.
Какие возможны исходы двух бросаний монеты?
1) Решка, решка.
2) Решка, орел.
3) Орел, решка.
4) Орел, орел.
Это все возможные события, других нет. Нас интересует вероятность 2-го или 3-го события.
Всего возможных исходов 4.
Благоприятных иcходов – 2.
Отношение 2/4 = 0,5.
1) благоприятных вариантов 4 (1,2,3,4), а всего вариантов 6 ( 1, 2,3,4,5,6).
вероятность равна 4:6 = 2/3
а) у=5 / х²+2;
Область определения этой функции - все значения, кроме тех, при которых знаменатель равен 0. Чтобы найти эти значения, решаем уравнение:
х²+2=0
х²=-2
Это уравнение не имеет решений, так как квадрат числа всегда ≥0
Значит, функция определена на всей числовой оси.
б) у=7х² / х(х+4);
Аналогично, решаем уравнение:
х(х+4)=0
x₁=0
x₂=-4
в) у=√2х²+3х-2;
Выражение под корнем не может быть меньше нуля. Решаем сначала уравнение:
2х²+3х-2=0
D=9+4*2*2=25
x₁=(-3+5)/4=1/2
x₂=(-3-5)/4=-2
На числовой оси отмечам корни x₁ и x₂ и отмечаем знаки получившихся промежутков:
+ - +
-2 1/2
Нам нужны те промежутки, где знак "+".
г) у=√х+4 / √х-5
Во-первых, имеем два выражения под корнем, и во-вторых, знаменатель:
x+4≥0 x-5≥0 x-5≠0
x≥-4 x≥5 x≠5
Находим пересечение решений трёх неравенств:
Объяснение:
Рад был