Можно попробовать метод подбора, но тут все предельно просто. Нам даже не важно сколько шариков, куда важнее их разнообразие. Чтобы два шарика имели одинаковый цвет, нужно чтобы других вариантов не оставалось, то есть чтобы ты взял либо все цвета по отдельности, либо одного цвета. То есть представим ситуацию: берём шарик (белый), второй (красный), третий (зелёный), четвертый (синий), а пятый в любом случае будет либо белым, либо зелёным, либо синим. Также может повезти, но это мы не берём в расчет. Поэтому ответ 5. Если возьмём 4, то с малой вероятностью может произойти представленная мною ситуация (хоть и шанс мал, но он есть)
1) 3x² = 0 ⇒ х = 0
2) 9x² = 81 ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0 ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4 ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20
2. Решить уравнения
1) x² + 5x = 0
х(х + 5) = 0
х₁ = 0 или х₂ = -5
2) 4x² = 0.16x
4x² - 0.16x = 0
4х (х - 0,04) = 0
х₁ = 0 или х₂ = 0,04
3) 9x² + 1 = 0
9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
3. Решить уравнения
1) 4x² - 169 = 0
4x² = 169
х² =
х₁ = -6,5 или х₂ = 6,5
2) 25 - 16x² = 0
16х² = 25
х₁ = -1,25 или х₂ = 1,25
3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ = -2√2 или х₂ = 2√2
4) 3x² = 15
х² = 5
х₁ = -√5 или х₂ = √5
5) 2x² =
х² =
х₁ = -0,25 или х₂ = 0,25
6) 3x² =
3х² =
х² =
х₁ = -1 или х₂ = 1
5
Объяснение:
Можно попробовать метод подбора, но тут все предельно просто. Нам даже не важно сколько шариков, куда важнее их разнообразие. Чтобы два шарика имели одинаковый цвет, нужно чтобы других вариантов не оставалось, то есть чтобы ты взял либо все цвета по отдельности, либо одного цвета. То есть представим ситуацию: берём шарик (белый), второй (красный), третий (зелёный), четвертый (синий), а пятый в любом случае будет либо белым, либо зелёным, либо синим. Также может повезти, но это мы не берём в расчет. Поэтому ответ 5. Если возьмём 4, то с малой вероятностью может произойти представленная мною ситуация (хоть и шанс мал, но он есть)