35 км/ч
Объяснение:
Дано:
S₁ = 35 км
S₂ = 34 км
t = 2 ч
Vр = 1 км/ч
V - ?
1)
Заметим, что собственная скорость лодки равна скорости ее движения по озеру:
V₁ = V
Время, затраченное на движение по озеру:
t₁ = S₁ / V₁
или
t₁ = S₁ / V.
2)
Время, затраченное на движение по реке.
Заметим, что река впадает в озеро, а это значит, что лодка двигалась против течения: V₂ = V - Vp
t₂ = S₂ / V₂ или
t₂ = S₂ / (V - Vp)
3)
Общее время движения:
t = t₁ + t₂
t = S₁ / V₁ + S₂ / (V - Vp)
Подставляем данные и решаем уравнение:
2 = 35 / V + 34 / (V - 1)
2·V·(V-1) = 35·(V-1) + 34·V
2·V² - 2·V = 35·V - 35 +34·V
2·V² - 71·V + 35 = 0
Решая это квадратное уравнение, получаем:
V = (71-69)/4 = 0,5 км/ч (слишком маленькая скорость...)
V = (71+69)/4 = 35 км/ч
(x-1)(x-2)(x-3)(x-4)=9/16
(x-2)(x-3) = х² - 5х + 6
(х - 1)(х - 4) = х² - 5 х + 4 = (х² - 5х + 6) - 2
[(х² - 5х + 6) - 2]·(х² - 5х + 6) = 9/16
(х² - 5х + 6)² - 2·(х² - 5х + 6) - 9/16 = 0
замена у = х² - 5х + 6
у² - 2у - 9/16 = 0
D = 4 + 9/4 = 25/4
√D = 5/2
y₁ = (2 - 5/2):2 = -1/4
y₂ = (2 + 5/2):2 = 9/4
возвращаемся к замене
1) х² - 5х + 6 = -1/4
х² - 5х + 25/4 = 0
D = 25 - 25 = 0
x = 5/2 = 2,5
2) х² - 5х + 6 = 9/4
х² - 5х + 15/4 = 0
D = 25 - 15 = 10
√D = √10
x₁ = (5 - √10):2 = 2,5 - √2.5 = √2.5 (√2.5 - 1)
x₂ = (5 + √10):2 = 2,5 + √2.5 = √2.5 (√2.5 + 1)
ответ: уравнение имеет два различных корня
x₁ = √2.5 (√2.5 - 1) и x₂ = √2.5 (√2.5 + 1)
и кратный корень
х₃ = х₄ = 2,5
35 км/ч
Объяснение:
Дано:
S₁ = 35 км
S₂ = 34 км
t = 2 ч
Vр = 1 км/ч
V - ?
1)
Заметим, что собственная скорость лодки равна скорости ее движения по озеру:
V₁ = V
Время, затраченное на движение по озеру:
t₁ = S₁ / V₁
или
t₁ = S₁ / V.
2)
Время, затраченное на движение по реке.
Заметим, что река впадает в озеро, а это значит, что лодка двигалась против течения: V₂ = V - Vp
t₂ = S₂ / V₂ или
t₂ = S₂ / (V - Vp)
3)
Общее время движения:
t = t₁ + t₂
или
t = S₁ / V₁ + S₂ / (V - Vp)
Подставляем данные и решаем уравнение:
2 = 35 / V + 34 / (V - 1)
2·V·(V-1) = 35·(V-1) + 34·V
2·V² - 2·V = 35·V - 35 +34·V
2·V² - 71·V + 35 = 0
Решая это квадратное уравнение, получаем:
V = (71-69)/4 = 0,5 км/ч (слишком маленькая скорость...)
V = (71+69)/4 = 35 км/ч
(x-1)(x-2)(x-3)(x-4)=9/16
(x-2)(x-3) = х² - 5х + 6
(х - 1)(х - 4) = х² - 5 х + 4 = (х² - 5х + 6) - 2
[(х² - 5х + 6) - 2]·(х² - 5х + 6) = 9/16
(х² - 5х + 6)² - 2·(х² - 5х + 6) - 9/16 = 0
замена у = х² - 5х + 6
у² - 2у - 9/16 = 0
D = 4 + 9/4 = 25/4
√D = 5/2
y₁ = (2 - 5/2):2 = -1/4
y₂ = (2 + 5/2):2 = 9/4
возвращаемся к замене
1) х² - 5х + 6 = -1/4
х² - 5х + 25/4 = 0
D = 25 - 25 = 0
x = 5/2 = 2,5
2) х² - 5х + 6 = 9/4
х² - 5х + 15/4 = 0
D = 25 - 15 = 10
√D = √10
x₁ = (5 - √10):2 = 2,5 - √2.5 = √2.5 (√2.5 - 1)
x₂ = (5 + √10):2 = 2,5 + √2.5 = √2.5 (√2.5 + 1)
ответ: уравнение имеет два различных корня
x₁ = √2.5 (√2.5 - 1) и x₂ = √2.5 (√2.5 + 1)
и кратный корень
х₃ = х₄ = 2,5