1)integralsin^4xdx=integral(sin^2x)^2dx=1/4integral (2sin^2x)^2dx=1/4integral(1-cos2x)^2dx=1/4integral(1-2cos2x+cos^2 (2x))dx=1/4(integraldx-integral(2cos2x)dx+ +integralcos^2 (2x)dx)=1/4(x-sin2x+1/2integral(1+cos4x)dx)=1/4x-1/4 sin2x+1/8*(x+1/4sin4x)=1/4*x-1/4*sin2x+1/8x+1/32sin4x+c ; 2)u=2x-x^2; du=d(2x-x^2); du=(2-2x)du. dv=e^xdx; v=integral e^xdx=e^x. integral e^x(2x-x^2)dx=(2x-x^2)*e^x-integrale^x(2-2x)dx= найдем integrale^x(2-2x)dx по частям, как выше сделано u=2-2x; du=d(2-2x); du=-2dx. dv=e^xdx; v=integrale^x)dx=e^x. integrale^x(2-2x)dx=(2-2x)*e^x-integral((e^x)(-2))dx=(2-2x)e^x+2e^x+c integrale^x(2x-x^2)dx=(2x-x^2)*e^x-(2-2x)e^x+2e^x+c=2xe^x-e^x*(x^2)-2e^x+2xe^x+2e^x+c=4xe^x-e^x*(x^2)+c где-то ошибка! найти не могу! Думаю, так надо делать
Выражение: 2/2-x-0.5=4/x*(2-x)
ответ: 4.5-x-8/x=0
Решаем по действиям:
1) 2/2=1
2.0|2_ _
2_ |1
0
2) 1-0.5=0.5
-1.0
_0_._5_
0.5
3) 4*(2-x)=8-4*x
4*(2-x)=4*2-4*x
3.1) 4*2=8
X4
_2_
8
4) (8-4*x)/x=8/x-4*x/x
5) x/x=1
6) 0.5-x-(8/x-4)=0.5-x-8/x+4
7) 0.5+4=4.5
+0.5
_4_._0_
4.5
Решаем по шагам:
1) 1-x-0.5-4/x*(2-x)=0
1.1) 2/2=1
2.0|2_ _
2_ |1
0
2) 0.5-x-4/x*(2-x)=0
2.1) 1-0.5=0.5
-1.0
_0_._5_
0.5
3) 0.5-x-(8-4*x)/x=0
3.1) 4*(2-x)=8-4*x
4*(2-x)=4*2-4*x
3.1.1) 4*2=8
X4
_2_
8
4) 0.5-x-(8/x-4*x/x)=0
4.1) (8-4*x)/x=8/x-4*x/x
5) 0.5-x-(8/x-4)=0
5.1) x/x=1
6) 0.5-x-8/x+4=0
6.1) 0.5-x-(8/x-4)=0.5-x-8/x+4
7) 4.5-x-8/x=0
7.1) 0.5+4=4.5
+0.5
_4_._0_
4.5
+integralcos^2 (2x)dx)=1/4(x-sin2x+1/2integral(1+cos4x)dx)=1/4x-1/4 sin2x+1/8*(x+1/4sin4x)=1/4*x-1/4*sin2x+1/8x+1/32sin4x+c ;
2)u=2x-x^2; du=d(2x-x^2); du=(2-2x)du.
dv=e^xdx; v=integral e^xdx=e^x.
integral e^x(2x-x^2)dx=(2x-x^2)*e^x-integrale^x(2-2x)dx=
найдем integrale^x(2-2x)dx по частям, как выше сделано
u=2-2x; du=d(2-2x); du=-2dx.
dv=e^xdx; v=integrale^x)dx=e^x.
integrale^x(2-2x)dx=(2-2x)*e^x-integral((e^x)(-2))dx=(2-2x)e^x+2e^x+c
integrale^x(2x-x^2)dx=(2x-x^2)*e^x-(2-2x)e^x+2e^x+c=2xe^x-e^x*(x^2)-2e^x+2xe^x+2e^x+c=4xe^x-e^x*(x^2)+c где-то ошибка! найти не могу! Думаю, так надо делать