Найдите наименьшее значение области функции: y=13-10x+x^2 Решение: Минимум параболы вида y = ах² + bx +с при a>0 находится в вершине параболы в точке x =-b/(2a) В нашем случае у =х²-10х+13 а=1 b=-10 x=10/2=5 y=5²-10*5+13= 25-50+13 =-25+13=-12 Получили минимум в точке (5;-12) Можно также применить исследование функции. Производная функции у' =(x²-10x+13)' = (x²)'-(10x)'+(13)' =2x-10 Находим критические точки у' =0 или 2х-10=0 х=5 На числовой прямой отобразим полученную точку, а также полученные по методу подстановки знаки производной. Например при х=0 у'=-10<0 - 0 + !> 5 х Функция убывает на промежутке (-оо;5) Функция возрастает на промежутке( 5;оо) В точке х=5 функция имеет локальный минимум. у(5)=-12 ответ: минимум в точке (5;-12)
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
Минимум параболы вида y = ах² + bx +с при a>0 находится в вершине параболы в точке x =-b/(2a)
В нашем случае у =х²-10х+13
а=1
b=-10
x=10/2=5
y=5²-10*5+13= 25-50+13 =-25+13=-12
Получили минимум в точке (5;-12)
Можно также применить исследование функции.
Производная функции
у' =(x²-10x+13)' = (x²)'-(10x)'+(13)' =2x-10
Находим критические точки
у' =0 или 2х-10=0
х=5
На числовой прямой отобразим полученную точку, а также полученные по методу подстановки знаки производной. Например при х=0 у'=-10<0
- 0 +
!>
5 х
Функция убывает на промежутке (-оо;5)
Функция возрастает на промежутке( 5;оо)
В точке х=5 функция имеет локальный минимум.
у(5)=-12
ответ: минимум в точке (5;-12)