Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
произведение равно нулю, когда хотя бы один из множителей равен нулю, а остальные имеют смысл.
Уравнение четвертой степени может иметь максимум 4 действительных различных корня: x₁; x₂; x₃; x₄ Первые два корня: x₁=√a и x₂=-√a квадратное уравнение: x²+2x+a-4=0
1)имеет два корня, если дискриминант больше нуля (D>0) 2)имеет один корень, если D=0 3)не имеет корней, если D<0
3-ий случай нас не интересует, так как исходное уравнение будет иметь только два корня: x₁=√a и x₂=-√a
анализируем исходное уравнение, если x₁=x₂ => √a=-√a => a=0 тогда квадратное уравнение x²+2x+a-4=0 - должно иметь два корня, (причем ни один из этих корней не должен равняться нулю) чтобы было хотя бы 3 корня у исходного уравнения
то есть a=0 подходит для нашего условия.
рассматривать a<0, нет смысла, так как x₁=√a и x₂=-√a "а" под квадратным корнем, значит "а" должно быть больше или равно нулю. Если x₁≠ x₂ , тогда "а" может быть любым положительным числом (а>0) и уже будет два корня. Следовательно квадратное уравнение может иметь один или два корня, чтобы всего было не менее 3-х корней.
c учетом того, что а=0 или а∈(0;5], получается, что а∈[0;5]
НО и это еще не все!
Уравнение четвертой степени может иметь меньше 3-х корней, если х₁=х₃ и х₂=х₄
или наоборот: х₁=х₄ и х₂=х₃
Найдем корни квадратного уравнения: х₃ и х₄
Дальше можешь сам(а) дорешать и убедится, что решений у этой системы нет
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
произведение равно нулю, когда хотя бы один из множителей равен нулю, а остальные имеют смысл.
Уравнение четвертой степени может иметь максимум 4 действительных различных корня: x₁; x₂; x₃; x₄
Первые два корня: x₁=√a и x₂=-√a
квадратное уравнение: x²+2x+a-4=0
1)имеет два корня, если дискриминант больше нуля (D>0)
2)имеет один корень, если D=0
3)не имеет корней, если D<0
3-ий случай нас не интересует, так как исходное уравнение будет иметь только два корня: x₁=√a и x₂=-√a
анализируем исходное уравнение,
если x₁=x₂ => √a=-√a => a=0
тогда квадратное уравнение x²+2x+a-4=0 - должно иметь два корня, (причем ни один из этих корней не должен равняться нулю) чтобы было хотя бы 3 корня у исходного уравнения
то есть a=0 подходит для нашего условия.
рассматривать a<0, нет смысла, так как x₁=√a и x₂=-√a
"а" под квадратным корнем, значит "а" должно быть больше или равно нулю.
Если x₁≠ x₂ , тогда "а" может быть любым положительным числом (а>0)
и уже будет два корня. Следовательно квадратное уравнение может иметь один или два корня, чтобы всего было не менее 3-х корней.
c учетом того, что а=0 или а∈(0;5], получается, что а∈[0;5]
НО и это еще не все!
Уравнение четвертой степени может иметь меньше 3-х корней, если
х₁=х₃ и х₂=х₄
или наоборот:
х₁=х₄ и х₂=х₃
Найдем корни квадратного уравнения: х₃ и х₄
Дальше можешь сам(а) дорешать и убедится, что решений у этой системы нет
эта система так же не имеет решений.
Были рассмотрены все случаи (по-моему мнению)
ОТВЕТ: а∈[0;5]