Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
{-17х² + 13у² - 220 = 0
Из первого уравнения х = 13у - 110
Вместо х подставим во второе уравнение
- 17 * (13у - 110)² + 13у² - 220 = 0
- 17 * (169у² - 2860у + 12100) + 13у² - 220 = 0
- 2873у² + 48620у - 205700 + 13у² - 220 = 0
- 2860у² + 48620у - 205920 = 0
Сократив на (- 2860), имеем
у² - 17у + 72 = 0
D = 289 - 4 * 1 * 72 = 289 - 288 = 1
√D = √1 = 1
у₁ = (17 + 1)/2 = 9
у₂ = (17 - 1)/2 = 8
При у₁ = 9 находим х₁ = 13*9 - 110 = 117 - 110 = 7 Первое решение {7; 9}
При у₂ = 8 находим х₂ = 13*8 - 110 = 104 - 110 = - 6 Второе решение {-6; 8}
ответ: {7; 9} и {-6; 8}
2 задание
n-m =(a-2)²
p-n=(b-3)²
m-p=(c-4)²
Извлекаем корни из обеих частей каждого равенства
√(n-m) = √(a-2)²
√(p-n) = √(b-3)²
√(m-p) = √(c-4)²
Получаем
√(n-m) = a-2
√(p-n) = b-3
√(m-p) = c-4
Складываем все эти три равенства
√(n-m) + √(p-n) + √(m-p) = a + b + c - 2 - 3 - 4
√(n-m) + √(p-n) + √(m-p) = a + b + c - 9
√(n-m) + √(p-n) + √(m-p) + 9 = a + b + c
Искомая сумма получена
a + b + c = √(n-m) + √(p-n) + √(m-p) + 9
Найдём коэффициенты а, в, с
Подставим координаты точки А
-6 = а· 0² + в·0 + с → с = -6
Подставим координаты точки В
-9 = а·1² + в·1 - 6 → а + в = -3 (1)
Подставим координаты точки С
6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2)
Подставим (2) а (1)
а + 2 - 6а = -3 → а = 1
Из (2) получим в = -4
Итак, мы получили уравнение параболы:
у = х² - 4х - 6
Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2
Ординату вершины параболы найдём,
подставив в уравнение параболы х = m = 2
у = 2² - 4 · 2 - 6 = -10
ответ: вершиной параболы является точка с координатами (2; -10)