Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
Aann1
08.06.2020 12:18 •
Алгебра
До ть будьласка з поясненням
Показать ответ
Ответ:
киокочан1
16.04.2023 02:06
|x^2 - 3x| + 2x - 6 <= 0
Нам нужно определить, на каких промежутках выражение под модулем отрицательно, на каких положительно, и на каких равно 0
x^2 - 3x = 0
x(x - 3) = 0
x1 = 0; x2 = 3
1) В точках x1 и x2 модуль равен 0
x1 = 0: 0 + 0 - 6 < 0 - подходит
x2 = 3: 0 + 2*3 - 6 = 0 - подходит.
2) При 0 < x < 3 будет x^2 - 3x < 0, поэтому |x^2 - 3x| = 3x - x^2
3x - x^2 + 2x - 6 <= 0
-x^2 + 5x - 6 <= 0
x^2 - 5x + 6 >= 0
(x - 2)(x - 3) >= 0
x <= 2 U x >= 3
С учетом заданного промежутка 0 < x < 3 получаем
0 < x <= 2
3) При x < 0 U x > 3 будет x^2 - 3x > 0, |x^2 - 3x| = x^2 - 3x
x^2 - 3x + 2x - 6 <= 0
x^2 - x - 6 <= 0
(x + 2)(x - 3) <= 0
-2 < x < 3
С учетом заданного промежутка x < 0 U x > 3 получаем
-2 < x < 0
Итоговое решение:
-2 < x < 0 U x = 0 U 0 < x < 2 U x = 3
ответ: -2 < x < 2 U x = 3
0,0
(0 оценок)
Ответ:
Aliona200
16.04.2023 02:06
|x^2 - 3x| + 2x - 6 <= 0
Нам нужно определить, на каких промежутках выражение под модулем отрицательно, на каких положительно, и на каких равно 0
x^2 - 3x = 0
x(x - 3) = 0
x1 = 0; x2 = 3
1) В точках x1 и x2 модуль равен 0
x1 = 0: 0 + 0 - 6 < 0 - подходит
x2 = 3: 0 + 2*3 - 6 = 0 - подходит.
2) При 0 < x < 3 будет x^2 - 3x < 0, поэтому |x^2 - 3x| = 3x - x^2
3x - x^2 + 2x - 6 <= 0
-x^2 + 5x - 6 <= 0
x^2 - 5x + 6 >= 0
(x - 2)(x - 3) >= 0
x <= 2 U x >= 3
С учетом заданного промежутка 0 < x < 3 получаем
0 < x <= 2
3) При x < 0 U x > 3 будет x^2 - 3x > 0, |x^2 - 3x| = x^2 - 3x
x^2 - 3x + 2x - 6 <= 0
x^2 - x - 6 <= 0
(x + 2)(x - 3) <= 0
-2 < x < 3
С учетом заданного промежутка x < 0 U x > 3 получаем
-2 < x < 0
Итоговое решение:
-2 < x < 0 U x = 0 U 0 < x < 2 U x = 3
ответ: -2 < x < 2 U x = 3
0,0
(0 оценок)
Популярные вопросы: Алгебра
nata524
30.06.2020 11:41
Решить неравенство x-3 (4*x-4)/(x+3)...
ДаРоВаНиЕ
25.06.2022 12:16
Решите уравнения: 1) (х+2)^4 + (х+2)² = 12 2) х³ + 2x² - x - 2 = 0 3) x^6 = (6x - 8)³ 4) x² - 3x + √6 - х = √6 - х + 28 5) (x² - 25)² + (x² + 3x - 10)² = 0 6) (x²...
kirill163aye
05.07.2022 13:44
Решить уравнение 2log_2(2x++4)-log_(2x+1)^2 = 2...
20kokosik26
01.12.2021 13:51
Відомо що а2+в2=200,а+в=16.чому при цьому дорівнює значення виразу ав...
Анна121314151
09.10.2020 00:50
Решить неравенства a)3x(2x-1)-6x² 2-x b) 12y²-(3y+4)4y y-10) v)(1+3x)(3x-1) 6x+9² g) (4x-3)(3+4x)+x 16x²...
р5553
29.03.2020 18:23
Решить неравенства a) 2(3-x)-(4x-1) b) 4(2a-1)-3(a+6) a g)0,8(2-x)-0,6(3-2x) 4 d)0,5(6-x)+(1+3x) 0,2 e)0,6(2x+1)-0,4(3x+2) 1...
Nanami334
27.12.2021 11:19
5а(а-1)(3а+1) разложите на множители . !...
Nad17ka
13.04.2022 06:40
50 б! за решение всех (решение с объяснением )...
kuraflin666
07.08.2022 13:34
2в степени 4/5 умножить на 2 в степени 11/5...
Юлия3640
18.08.2022 20:16
Найдите все значения а, при каждом из которых уравнение имеет единственный корень аx• корень из -6 - x в квадрате - 5.(дальше) -5а -2 =0...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
Нам нужно определить, на каких промежутках выражение под модулем отрицательно, на каких положительно, и на каких равно 0
x^2 - 3x = 0
x(x - 3) = 0
x1 = 0; x2 = 3
1) В точках x1 и x2 модуль равен 0
x1 = 0: 0 + 0 - 6 < 0 - подходит
x2 = 3: 0 + 2*3 - 6 = 0 - подходит.
2) При 0 < x < 3 будет x^2 - 3x < 0, поэтому |x^2 - 3x| = 3x - x^2
3x - x^2 + 2x - 6 <= 0
-x^2 + 5x - 6 <= 0
x^2 - 5x + 6 >= 0
(x - 2)(x - 3) >= 0
x <= 2 U x >= 3
С учетом заданного промежутка 0 < x < 3 получаем
0 < x <= 2
3) При x < 0 U x > 3 будет x^2 - 3x > 0, |x^2 - 3x| = x^2 - 3x
x^2 - 3x + 2x - 6 <= 0
x^2 - x - 6 <= 0
(x + 2)(x - 3) <= 0
-2 < x < 3
С учетом заданного промежутка x < 0 U x > 3 получаем
-2 < x < 0
Итоговое решение:
-2 < x < 0 U x = 0 U 0 < x < 2 U x = 3
ответ: -2 < x < 2 U x = 3
Нам нужно определить, на каких промежутках выражение под модулем отрицательно, на каких положительно, и на каких равно 0
x^2 - 3x = 0
x(x - 3) = 0
x1 = 0; x2 = 3
1) В точках x1 и x2 модуль равен 0
x1 = 0: 0 + 0 - 6 < 0 - подходит
x2 = 3: 0 + 2*3 - 6 = 0 - подходит.
2) При 0 < x < 3 будет x^2 - 3x < 0, поэтому |x^2 - 3x| = 3x - x^2
3x - x^2 + 2x - 6 <= 0
-x^2 + 5x - 6 <= 0
x^2 - 5x + 6 >= 0
(x - 2)(x - 3) >= 0
x <= 2 U x >= 3
С учетом заданного промежутка 0 < x < 3 получаем
0 < x <= 2
3) При x < 0 U x > 3 будет x^2 - 3x > 0, |x^2 - 3x| = x^2 - 3x
x^2 - 3x + 2x - 6 <= 0
x^2 - x - 6 <= 0
(x + 2)(x - 3) <= 0
-2 < x < 3
С учетом заданного промежутка x < 0 U x > 3 получаем
-2 < x < 0
Итоговое решение:
-2 < x < 0 U x = 0 U 0 < x < 2 U x = 3
ответ: -2 < x < 2 U x = 3