1.Пусть скорость первого Х. Второго Х-20. 240/(Х-20)-240/Х=1 240*(Х-Х+20) =Х*Х-20Х Х*Х-20Х=4800 Х*Х-20Х+100=4900 (Х-10)*(Х-10)=70*70 Положительный Х один и равен 80 ответ : 80 км/ч
2) Средняя линия трапеции (9+15)/2=12 Средние линии двух треугольников образуемых верхним основанием и двумя нижними вершинами одинаковы и равны половине верхнего(меньшего) основания, т.е равны 4,5. Искомый отрезок, очевидно, равен средней линии трапеции минус длины средних линий этих треугольников, т.е. равен 12-2*4,5=3 ответ: 3
Первый весь путь S со скоростью v за время t = S/v. Второй со скоростью v-3, и еще S/2 со скоростью 22,5. И затратил столько же времени. t = S/v = S/(2(v-3)) + S/(2*22,5) Делим все на S. 1/v = 1/(2v-6) + 1/45 Умножаем все на 45v(2v-6) 45(2v - 6) = 45v + v(2v - 6) 90v - 270 = 45v + 2v^2 - 6v 0 = 2v^2 - 51v + 270 D = 51^2 - 4*2*270 = 2601 - 2160 = 441 = 21^2 v1 = (51 - 21)/4 = 30/4 = 7,5 < 15 - не подходит v2 = (51 + 21)/4 = 72/4 = 18 > 15 - подходит. ответ: скорость 1 лыжника 18 км/ч. P.S. Я, почему-то, еще не решив задачу, сразу подумал, что ответ 18.
240/(Х-20)-240/Х=1
240*(Х-Х+20) =Х*Х-20Х
Х*Х-20Х=4800
Х*Х-20Х+100=4900
(Х-10)*(Х-10)=70*70
Положительный Х один и равен 80
ответ : 80 км/ч
2) Средняя линия трапеции (9+15)/2=12
Средние линии двух треугольников образуемых верхним основанием и двумя нижними вершинами одинаковы и равны половине верхнего(меньшего) основания, т.е равны 4,5.
Искомый отрезок, очевидно, равен средней линии трапеции минус длины средних линий этих треугольников, т.е. равен 12-2*4,5=3
ответ: 3
Второй со скоростью v-3, и еще S/2 со скоростью 22,5.
И затратил столько же времени.
t = S/v = S/(2(v-3)) + S/(2*22,5)
Делим все на S.
1/v = 1/(2v-6) + 1/45
Умножаем все на 45v(2v-6)
45(2v - 6) = 45v + v(2v - 6)
90v - 270 = 45v + 2v^2 - 6v
0 = 2v^2 - 51v + 270
D = 51^2 - 4*2*270 = 2601 - 2160 = 441 = 21^2
v1 = (51 - 21)/4 = 30/4 = 7,5 < 15 - не подходит
v2 = (51 + 21)/4 = 72/4 = 18 > 15 - подходит.
ответ: скорость 1 лыжника 18 км/ч.
P.S. Я, почему-то, еще не решив задачу, сразу подумал, что ответ 18.