Давайте решение уравнения -9(8 - 9x) = 4x + 5 начнем с того, что откроем скобки.
Для этого применим дистрибутивный закон умножения:
-9 * 8 - 9 * (-9x) = 4x + 5;
-72 + 81x = 4x + 5;
Далее мы собираем в разных частях уравнения слагаемые с переменными и без.
81x - 4x = 5 + 72;
Приводим подобные в обеих частях полученного равенства:
x(81 - 4) = 77;
77x = 77;
Ищем неизвестный множитель:
x = 77 : 77;
x = 1.
Проверим верно ли мы нашли корень:
-9(8 - 9 * 1) = 4 * 1 + 5;
-9 * (-1) = 4 + 5;
9 = 9.
ответ: x = 1.
Объяснение:
Описание функции по ее графику.
a)
D(f)=[-6;3]
b)
E(f)=[-3;7]
c)
f(x)>0,
если х€[-6;-5)обьед.(-1; 3]
f(x)<0,
если х€(-5; -1)
d)
Максимального значения функция
достигает в точке х=-6.
fmax(-6)=7
В точке х=1 функция достигает ло
кального максимума f(1)=4, но полу
ченное значение не будет max во
всей обрасти определения. Макси
мального значения функция дости
гает в точке х=-6, которая лежит на
границе области определения.
е) Функция не является ни четной
ни нечетной ( функция общего вида).
Если функция четная, то график
симмметричен относительно ОУ.
Если функция нечетная, то график
симметричен относительно точки
начала отсчета (0; 0).
На чертеже график не имеет сим
метрии ==> имеем функцию обще
го вида.
Давайте решение уравнения -9(8 - 9x) = 4x + 5 начнем с того, что откроем скобки.
Для этого применим дистрибутивный закон умножения:
-9 * 8 - 9 * (-9x) = 4x + 5;
-72 + 81x = 4x + 5;
Далее мы собираем в разных частях уравнения слагаемые с переменными и без.
81x - 4x = 5 + 72;
Приводим подобные в обеих частях полученного равенства:
x(81 - 4) = 77;
77x = 77;
Ищем неизвестный множитель:
x = 77 : 77;
x = 1.
Проверим верно ли мы нашли корень:
-9(8 - 9 * 1) = 4 * 1 + 5;
-9 * (-1) = 4 + 5;
9 = 9.
ответ: x = 1.
Объяснение:
Описание функции по ее графику.
Объяснение:
a)
D(f)=[-6;3]
b)
E(f)=[-3;7]
c)
f(x)>0,
если х€[-6;-5)обьед.(-1; 3]
f(x)<0,
если х€(-5; -1)
d)
Максимального значения функция
достигает в точке х=-6.
fmax(-6)=7
В точке х=1 функция достигает ло
кального максимума f(1)=4, но полу
ченное значение не будет max во
всей обрасти определения. Макси
мального значения функция дости
гает в точке х=-6, которая лежит на
границе области определения.
е) Функция не является ни четной
ни нечетной ( функция общего вида).
Если функция четная, то график
симмметричен относительно ОУ.
Если функция нечетная, то график
симметричен относительно точки
начала отсчета (0; 0).
На чертеже график не имеет сим
метрии ==> имеем функцию обще
го вида.