Наносим наши нули на числовую прямую: ----------- -2 -------- 0 ---------- 1 --------- >
Подставляя числа из промежутка в производную находим, в каких промежутках производная отрицательна, а в каких положительна. Отмечаем знаками на числовой прямой: ------ --- ----- -2 --- +++ -- 0 ----- --- ---- 1 --- +++ ---- > Получается, что x = 1 - точка минимума. Осталось сравнить f(1), f(-1). (f(2) не проверяем, ведь оно больше f(-1)) f(1) = -17 f(-1) = -25
Сомневаюсь, что в 5-9 классе изучают производную функции |x|, поэтому решим аналитически: Найдём точку смены знака модуля: 2x + 4 = 0, x = -2 Получается, что на отрезке [-3;-2] функция убывает, а на отрезке [-2;3] функция возрастает. Причем возрастает симметрично относительно прямой x = -2, поэтому в точке x = 3 будет наибольшее значение функции. f(3) = 9. Наибольшее значение функции = 9. Так как минимальное значение функции y = |2x+4| - это 0, то отнимая от функции 1, получаем, что минимальное значение = -1.
Находим нули производной:
Наносим наши нули на числовую прямую:
----------- -2 -------- 0 ---------- 1 --------- >
Подставляя числа из промежутка в производную находим, в каких промежутках производная отрицательна, а в каких положительна. Отмечаем знаками на числовой прямой:
------ --- ----- -2 --- +++ -- 0 ----- --- ---- 1 --- +++ ---- >
Получается, что x = 1 - точка минимума.
Осталось сравнить f(1), f(-1). (f(2) не проверяем, ведь оно больше f(-1))
f(1) = -17
f(-1) = -25
ответ: -25
Найдём точку смены знака модуля: 2x + 4 = 0, x = -2
Получается, что на отрезке [-3;-2] функция убывает, а на отрезке [-2;3] функция возрастает. Причем возрастает симметрично относительно прямой x = -2, поэтому в точке x = 3 будет наибольшее значение функции.
f(3) = 9.
Наибольшее значение функции = 9.
Так как минимальное значение функции y = |2x+4| - это 0, то отнимая от функции 1, получаем, что минимальное значение = -1.
9 - (-1) = 10
ответ: 10