2) Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных.
Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
а) 21х³у³ * (-4/7х) =
=(21 * (-4/7))х⁴у³ =
= -12х⁴у³;
б) -0,25a²b⁴ * (-8ba³) =
=((-0,25) * (-8))a⁵b⁵ =
= 2a⁵b⁵.
3. Упростить:
а) (-0,2ху⁵)³ = -0,008х³у¹⁵;
б) 8х⁵у * (-х³у⁴)⁴ = 8х⁵у * х¹²у¹⁶ = 8х¹⁷у¹⁷.
4)
а) 1/36х²у¹⁶ = (1/6ху⁸)²;
б) -8а¹²b³ = (-2a⁴b)³. скобки в кубе, если плохо видно.
В решении.
Объяснение:
1) 3a³b² = при а= -3; b = -1/3
= 3 * (-3)³ * (-1/3)² =
= 3 * (-27) * 1/9 =
= (3* (-27))/9 = -9.
2) Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных.
Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
а) 21х³у³ * (-4/7х) =
=(21 * (-4/7))х⁴у³ =
= -12х⁴у³;
б) -0,25a²b⁴ * (-8ba³) =
=((-0,25) * (-8))a⁵b⁵ =
= 2a⁵b⁵.
3. Упростить:
а) (-0,2ху⁵)³ = -0,008х³у¹⁵;
б) 8х⁵у * (-х³у⁴)⁴ = 8х⁵у * х¹²у¹⁶ = 8х¹⁷у¹⁷.
4)
а) 1/36х²у¹⁶ = (1/6ху⁸)²;
б) -8а¹²b³ = (-2a⁴b)³. скобки в кубе, если плохо видно.
1) f(x) =x⁴ + 4·sin²x·cos²x - чётная функция
2) f(x) =x⁴ + 4·sin²x·cos²x - нечётная функция
Объяснение:
Определение. Функция f(x), x∈X, называется чётной, если для любого значения x из множества X выполняется равенство: f(–x) = f(x).
Определение. Функция f(x), x∈X, называется нечётной, если для любого значения x из множества X выполняется равенство: f(–x) =–f(x).
Известно, что функция:
sinx – нечётная, cosx - чётная, tgx – нечётная, ctgx – нечётная.
Решение.
1) Функция f(x) =x⁴ + 4·sin²x·cos²x определена при всех x∈R. Проверим по определению при x∈R:
f(–x) = (–x)⁴ +4·sin²(–x)·cos²(–x) = x⁴ +4·(–sinx)²·cos²x =
= x⁴ +4·sin²x·cos²x = f(x), то есть f(–x) = f(x) и функция – чётная;
2) Функция f(x) = (tgx – ctgx)/cosx определена при всех x∈X=R\{πn, π/2+πk, n∈Z, k∈Z}. Проверим по определению при x∈X:
f(–x) = (tg(–x) – ctg(–x))/cos(–x) = (–tgx –(–ctgx))/cosx =
= –(tgx – ctgx)/cosx = –f(x), то есть f(–x) = –f(x) и функция – нечётная.